

Allgemeine Bauartgenehmigung

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum:

Geschäftszeichen:

07.09.2020

III 37-1.19.14-333/19

Nummer:

Z-19.14-1833

Antragsteller:

HERO-FIRE GmbH Industriestr. 1 26906 Dersum

Geltungsdauer

vom: 7. September 2020 bis: 7. September 2025

Arnold Brandschutzglas Vertriebs-GmbH & Co. KG Kastanienstraße 10 09356 St. Egidien

Gegenstand dieses Bescheides:

Bauart zum Errichten der Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30 nach DIN 4102-13

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich genehmigt. Dieser Bescheid umfasst 23 Seiten und 29 Anlagen.

Seite 2 von 23 | 7. September 2020

I ALLGEMEINE BESTIMMUNGEN

- Mit der allgemeinen Bauartgenehmigung ist die Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Anwender des Regelungsgegenstandes sind, unbeschadet weitergehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen
 müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der
 deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- Dieser Bescheid bezieht sich auf die von dem Antragsteller im Genehmigungsverfahren zum Regelungsgegenstand gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Genehmigungsgrundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.
- 8 Die von diesem Bescheid umfasste allgemeine Bauartgenehmigung gilt zugleich als allgemeine bauaufsichtliche Zulassung für die Bauart.

Z87499,19

Seite 3 von 23 | 7. September 2020

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Anwendungsbereich

1.1 Regelungsgegenstand

- 1.1.1 Die allgemeine Bauartgenehmigung gilt für das Errichten der Brandschutzverglasung, "FIRE-HO" genannt, als Bauteil der Feuerwiderstandsklasse F 30 nach DIN 4102-131,
- 1.1.2 Die Brandschutzverglasung ist im Wesentlichen aus folgenden Bauprodukten, jeweils nach Abschnitt 2.1.1, zu errichten:
 - für den Rahmen:
 - Holzprofile und Rahmenverbindungen
 - für die Verglasung:
 - Scheiben
 - Scheibenauflager
 - Scheibendichtungen
 - Glashalteleisten
 - Befestigungsmittel und
 - Fugenmaterialien

1.2 Anwendungsbereich

1.2.1 Der Regelungsgegenstand ist mit dieser allgemeinen Bauartgenehmigung als Bauart zur Errichtung von nichttragenden Innenwänden bzw. zur Ausführung lichtdurchlässiger Teilflächen in Innenwänden nachgewiesen und darf - unter Berücksichtigung bauordnungsrechtlicher Maßgaben - angewendet werden (s. auch Abschnitt 1.2.3).

Bei Verwendung von Scheiben aus Mehrscheiben-Isolierglas nach Abschnitt 2.1.1.2.1 und unter Berücksichtigung von Abschnitt 1.2.3 ist die Brandschutzverglasung in brandschutztechnischer Hinsicht auch als Bauart zur Errichtung von nichttragenden Außenwänden bzw. zur Ausführung lichtdurchlässiger Teilflächen in Außenwänden nachgewiesen.

- 1.2.2 Die nach dieser allgemeinen Bauartgenehmigung errichtete Brandschutzverglasung erfüllt die Anforderungen der Feuerwiderstandsklasse F 30 bei einseitiger Brandbeanspruchung, jedoch unabhängig von der Richtung der Brandbeanspruchung.
- 1.2.3 Die Brandschutzverglasung ist in brandschutztechnischer Hinsicht nachgewiesen.

Nachweise der Standsicherheit und diesbezüglicher Gebrauchstauglichkeit sind für die - auch in den Anlagen dargestellte - Brandschutzverglasung, unter Einhaltung der Bestimmungen dieser allgemeinen Bauartgenehmigung, insbesondere der Bestimmungen in Abschnitt 2.2, für die im Anwendungsfall geltenden Verhältnisse und Erfordernisse, zu führen.

Sofern nach bauaufsichtlichen Vorschriften Anforderungen an den Wärmeschutz gestellt werden, ist bei der Nachweisführung Abschnitt 2.2.2 zu beachten.

Die Anwendung der Brandschutzverglasung ist nicht nachgewiesen, wo nach bauaufsichtlichen Vorschriften Anforderungen an den Schallschutz gestellt werden.

Weitere Nachweise der Gebrauchstauglichkeit (z. B. Luftdichtigkeit, Schlagregendichtheit, Temperaturwechselbeständigkeit) sind für die in Abschnitt 2.2.3 aufgeführten Ausführungsvarianten erbracht.

Nachweise der Dauerhaftigkeit der Gesamtkonstruktion sind mit dieser allgemeinen Bauartgenehmigung nicht erbracht.

DIN 4102-13:1990-05

Brandverhalten von Baustoffen und Bauteilen; Brandschutzverglasungen; Begriffe, Anforderungen und Prüfungen

Seite 4 von 23 | 7. September 2020

- 1.2.4 Die Brandschutzverglasung ist bei vertikaler Anordnung (Einbaulage 90°) in/an
 - Massivwände bzw. -decken oder
 - Wände aus Gipsplatten, jedoch nur seitlich, oder
 - bekleidete Stahlbauteile oder unbekleidete Holzbauteile, sofern diese wiederum über ihre gesamte Länge bzw. Höhe an raumabschließende, mindestens ebenso feuerwiderstandsfähige Bauteile angeschlossen sind,

nach Abschnitt 2.3.3.1 einzubauen/anzuschließen. Diese an die Brandschutzverglasung allseitig angrenzenden Bauteile müssen mindestens feuerhemmend² sein.

- 1.2.5 Die zulässige Höhe der Brandschutzverglasung beträgt maximal 4000 mm. Die Länge der Brandschutzverglasung ist nicht begrenzt.
- 1.2.6 Die Brandschutzverglasung ist so in Teilflächen zu unterteilen, dass maximale Einzelglasflächen gemäß Abschnitt 2.1.1.2.1 entstehen.
 - Bei Verwendung von Verbundglasscheiben dürfen maximal zwei Scheiben mit den in Abschnitt 2.1.1.2.1 aufgeführten Abmessungen seitlich nebeneinander als sog. Stoßfugenverglasung ausgeführt werden.
- 1.2.7 In einzelnen Teilflächen der Brandschutzverglasung dürfen anstelle der Scheiben Ausfüllungen der Typen A bis C nach Abschnitt 2.1.1.5.1 mit maximal zulässigen Abmessungen entsprechend Abschnitt 2.1.1.5.1 verwendet werden.
- 1.2.8 Die Brandschutzverglasung darf unter Berücksichtigung der Bestimmungen des Abschnitts 2.3.2.3.2 auf ihren Grundriss bezogene Eckausbildungen erhalten, sofern der eingeschlossene Winkel zwischen ≥ 90° und < 180° beträgt.
- 1.2.9 Die Brandschutzverglasung ist jedoch nur bei Innenanwendung in Verbindung mit Feuerschutzabschlüssen nach Abschnitt 2.1.2.1 nachgewiesen.
- 1.2.10 Die Brandschutzverglasung ist bei Außenanwendung in Verbindung mit Fenstern mit Feuerund Rauchschutzeigenschaften nach Abschnitt 2.1.2.2 nachgewiesen.
- 1.2.11 Sofern nach bauaufsichtlichen Vorschriften Anforderungen an die Absturzsicherheit ohne Brandeinwirkung³ gestellt werden, sind die Bestimmungen nach Abschnitt 2.2.4 zu beachten.
- 1.2.12 Die Brandschutzverglasung darf nicht planmäßig der Aussteifung anderer Bauteile dienen.
- 2 Bestimmungen für Planung, Bemessung und Ausführung
- 2.1 Planung
- 2.1.1 Bestandteile der Brandschutzverglasung
- 2.1.1.1 Rahmen
- 2.1.1.1.1 Rahmenprofile (Pfosten und Riegel)

Es sind Profile aus

- Vollholz nach DIN EN 14081-14 in Verbindung mit DIN 20000-55 aus
 - Nadelholz (charakteristischer Wert der Rohdichte ρ_κ ≥ 420 kg/m³) oder
 - Laubholz (charakteristischer Wert der Rohdichte ρ_κ ≥ 500 kg/m³) oder
- Bauaufsichtliche Anforderungen, Klassen und erforderliche Leistungsangaben gemäß der Technischen Regel A 2.2.1.2 (Anhang 4) der Muster-Verwaltungsvorschrift Technische Baubestimmungen (MVV TB), Ausgabe 2019, s. www.dibt.de
- Die Nachweise der Absturzsicherheit sind entsprechend bauaufsichtlichen Maßgaben für die Anwendung der Brandschutzverglasung unter Normalbedingungen (sog. Kaltfall), d. h. nicht unter gleichzeitiger Berücksichtigung des Brandfalles, zu führen.
- 4 DIN EN 14081-1:2011-05

Holzbauwerke - Nach Festigkeit sortiertes Bauholz für tragende Zwecke mit rechteckigem Querschnitt - Teil 1: Allgemeine Anforderungen

5 DIN 20000-5:2012-03

Anwendung von Bauprodukten in Bauwerken – Teil 5: Nach Festigkeit sortiertes Bauholz für tragende Zwecke mit rechteckigem Querschnitt

Seite 5 von 23 | 7. September 2020

− Brettschichtholz nach DIN EN 14080⁶ in Verbindung mit DIN 20000-3⁷, charakteristischer Wert der Rohdichte $\rho_{\kappa} \ge 500 \text{ kg/m}^3$,

mit Mindestabmessungen von

- 100 mm (Ansichtsbreite) x 68 mm für äußere, umlaufende Rahmenprofile bei Anordnung der Brandschutzverglasung vor angrenzenden Bauteilen,
- 19 mm bis 21 mm (jeweils Ansichtsbreite) x 68 mm für zu koppelnde Pfosten,
- 20 mm bzw. 40 mm (jeweils Ansichtsbreite) x 75 mm in Verbindung mit Feuerschutzabschlüssen,
- 20 mm bzw. 37 mm (jeweils Ansichtsbreite) x 78 mm in Verbindung mit Fenstern mit Feuer- und Rauchschutzeigenschaften und
- 30 mm (Ansichtsbreite) x 68 mm für sonstige Rahmenprofile

zu verwenden.

Wahlweise dürfen Profile mit einseitig ausgefrästem Profilanschlag (zur Glashalterung) mit Mindestabmessungen gemäß den Anlagen 3 bis 7 verwendet werden.

Für die Ausführung mit Glashalteleisten aus einer Aluminiumlegierung nach Abschnitt 2.1.1.2.4 sind Rahmenprofile aus vorgenanntem Vollholz mit Mindestabmessungen von

- 68 mm (Ansichtsbreite) x 90 mm (für äußere, umlaufende Rahmenprofile) und
- 70 mm (Ansichtsbreite) x 90 mm (für sonstige Rahmenprofile)

zu verwenden.

2.1.1.1.2 Rahmenverbindungen

- a) Die Verbindungen der Rahmenprofile bei Rahmenecken sowie bei T- und Kreuzstößen müssen unter Verwendung von folgenden Bauprodukten ausgeführt werden:
 - geeigneter Kleber (Leim) auf Basis von Polyvinylacetat (PVAC) oder Polyurethan (PUR), jeweils nach DIN EN 9238, Beanspruchungsgruppe
 - D4 nach DIN EN 2049 oder
 - C4 nach DIN EN 1276510,
 - ggf. Dübel Ø≥8 mm oder ≥4 mm dicke Flachdübel, jeweils aus Laubholz nach DIN EN 14081-1⁴ in Verbindung mit DIN 20000-5⁵.
- b) Für die Verbindungen der Holzprofile bei
 - Verwendung verstärkter bzw. zusammengesetzter Pfostenprofile,
 - seitlicher Aneinanderreihung von Rahmen und
 - Ausführung der Pfostenprofile mit sog. Schattennut

sind folgende Bauprodukte zu verwenden:

- ggf. Verbindungsfedern aus Laubholz nach DIN EN 14081-1⁴ in Verbindung mit DIN 20000-5⁵, charakteristischer Wert der Rohdichte ρ_κ ≥ 500 kg/m³, mit Abmessungen entsprechend den Anlagen 6 und 7,
- ein geeigneter vorgenannter Kleber (Leim) und
- Stahlschrauben Ø ≥ 5 mm.

6 7	DIN EN 14080:2013-09 DIN 20000-3:2015-02	Holzbauwerke - Brettschichtholz - Anforderungen Anwendung von Bauprodukten in Bauwerken – Teil 3: Brettschichtholz und Balken-
8	DIN EN 923:2016-03	schichtholz nach DIN EN 14080 Klebstoffe – Benennungen und Definitionen
9	DIN EN 204:2016-11	Klassifizierung von thermoplastischen Holzklebstoffen für nichttragende Anwendungen
10	DIN EN 12765:2016-11	Klassifizierung von duromeren Holzklebstoffen für nichttragende Anwendungen

Seite 6 von 23 | 7. September 2020

2.1.1.2 Verglasung

2.1.1.2.1 Scheiben

Für Brandschutzverglasungen nach dieser allgemeinen Bauartgenehmigung sind die mindestens normalentflammbaren² Scheiben der Firmen Arnold Brandschutzglas Vertriebs-GmbH & Co. KG, St. Egidien oder Hero-Fire GmbH, Dersum, entsprechend Tabelle 1 zu verwenden.

Tabelle 1

Scheibentyp, ggfaufbau, ggflagerungsart	maximale Scheibengröße, Breite x Höhe [mm]	gemäß Anlage
Verbundglasscheiben nach DIN EN 14449	11	
"ARNOLD-FIRE 30"	1500 x 3000	26
"HERO-FIRE 30"	oder 3000 x 1500	27
"ARNOLD-FIRE 30" mit Pos. 9.1 aus ESG¹² ≥ 6 mm oder VSG, wahlweise dreiseitig linienförmig gelagert (maximal 2 Scheiben nebeneinander), für sog. Stoßfugenverglasung		26
"HERO-FIRE 30" mit Pos. 9.1 aus ESG¹² ≥ 6 mm oder VSG wahlweise dreiseitig linienförmig gelagert (maximal 2 Scheiben nebeneinander), für sog. Stoßfugenverglasung	1600 x 3500	27
Mehrscheiben-Isolierglas nach DIN EN 127	'9-5 ¹³	
"ARNOLD-FIRE 30 ISO"	1500 x 3000 oder	28
"HERO-FIRE 30 ISO"	3000 x 1500	29
"ARNOLD-FIRE 30 ISO" mit Pos. 9.1 aus ESG¹² ≥ 6 mm oder VSG	4000 0500	28
"HERO-FIRE 30 ISO" mit Pos. 9.1 aus ESG¹² ≥ 6 mm oder VSG	1600 x 3500	29

2.1.1.2.2 Scheibenauflager

Es sind ca. 5 mm dicke Klötzchen aus

- − Hartholz (Laubholz nach DIN EN 14081-1⁴ in Verbindung mit DIN 20000-5⁵, charakteristischer Wert der Rohdichte $\rho_{\kappa} \ge 500 \text{ kg/m}^3$) oder
- "Flammi 12" der Firma Rolf Kuhn GmbH, Erndtebrück,

zu verwenden.

2.1.1.2.3 Scheibendichtungen

 a) dämmschichtbildende Baustoffe/im Brandfall aufschäumende Bauprodukte für die Ausführung mit Glashalteleisten aus Aluminiumlegierung nach Abschnitt 2.1.1.2.4
 Für die Fugen zwischen den Stirnseiten der Scheiben aus Mehrscheiben-Isolierglas und den Rahmenprofilen (im Falzgrund) sind normalentflammbare² Streifen vom Typ

DIN EN 14449:2005-07 Glas im Bauwesen - Verbundglas und Verbund-Sicherheitsglas - Konformitätsbewertung/Produktnorm

Wahlweise heißgelagertes Kalknatron-Einscheibensicherheitsglas

DIN EN 1279-5:2018-10 Glas im Bauwesen - Mehrscheiben-Isolierglas - Teil 5: Produktnorm

Seite 7 von 23 | 7. September 2020

- "PROMASEAL-LW" gemäß allgemeiner bauaufsichtlicher Zulassung Nr. Z-19.11-1783, Abmessungen: 40 mm x 1,8 mm (Breite x Dicke) oder
- "Kerafix Flexpan 200" mit der Leistungserklärung Nr. 002/01/1709 vom 20.09.2017, Abmessungen: 20 mm x 2,0 mm (Breite x Dicke),

zu verwenden.

- b) im Brandfall aufschäumende Bauprodukte für die sonstigen Ausführungen Für die Fugen zwischen den Stirnseiten der Scheiben und den Rahmenprofilen (im Falzgrund) sind normalentflammbare² Streifen vom Typ "Kerafix Flexpress 100" mit der Leistungserklärung Nr. 110/01/1808 vom 09.08.2018, Abmessungen: 25 mm x 1,0 mm (Breite x Dicke), zu verwenden.
- Dichtungen für seitliche Fugen zwischen den Scheiben aus Mehrscheiben-Isolierglas und den Glashalteleisten für die Ausführung gemäß Anlage 23

Es sind folgende Bauprodukte zu verwenden:

- spezielle EPDM-Dichtungsprofile (Typ HA 3060/5 N) der Firma GUTMANN Bausysteme GmbH, Weißenburg und
- ein mindestens normalentflammbarer² Silikon-Dichtstoff nach DIN EN 15651-2¹⁴.
- d) Dichtungen für sonstige seitliche Fugen zwischen den Scheiben und den Glashalteleisten aus Holz bzw. den Rahmenprofilen

Es sind - je nach Ausführungsvariante - folgende Bauprodukte zu verwenden:

- normalentflammbare² Dichtungsstreifen vom Typ "Kerafix 2000" gemäß allgemeinem bauaufsichtlichen Prüfzeugnis Nr. P-3074/3439-MPA BS oder
- spezielle PE-Vorlegebänder (Typ ARAFIX-Band) der Firma Einkaufsgesellschaft für ARA-Produkte mbH und Co. KG, Nürnberg,

Abmessungen: ≥ 12 mm x 3 mm (Breite x Dicke) und/oder

- ein mindestens normalentflammbarer² Silikon-Dichtstoff nach DIN EN 15651-2¹⁴.
- e) Dichtungen für vertikale Fugen zwischen nebeneinander anzuordnenden Scheiben (sog. Stoßfugenverglasung)

Es sind folgende Bauprodukte zu verwenden:

- normalentflammbare² Dichtungsstreifen vom Typ "Kerafix 2000" gemäß allgemeinem bauaufsichtlichen Prüfzeugnis Nr. P-3074/3439-MPA BS, Abmessungen: ≥ 15 mm x 3 mm (Breite x Dicke) und
- ein mindestens normalentflammbarer² Silikon-Dichtstoff nach DIN EN 15651-2¹⁴.

2.1.1.2.4 Glashalteleisten

- a) Profile aus Vollholz und aus Aluminiumlegierung für die Ausführung gemäß Anlage 23
 Es sind folgende Bauprodukte zu verwenden:
 - Profile aus Vollholz nach DIN EN 14081-14 in Verbindung mit DIN 20000-55 aus
 - Nadelholz (charakteristischer Wert der Rohdichte $ρ_κ ≥ 420 \text{ kg/m}^3$) oder
 - − Laubholz (charakteristischer Wert der Rohdichte $ρ_κ ≥ 500 \text{ kg/m}^3$) mit Mindestabmessungen von 20 mm (Ansichtsbreite) x 35 mm, in Verbindung mit Stahlschrauben $Ø ≥ 3,5 \text{ mm} \times 50 \text{ mm}$ und
 - stranggepresste Präzisionsprofile nach DIN EN 15088¹⁶ und DIN EN 12020-1¹⁶ aus der Aluminiumlegierung EN AW-6060 (Werkstoffnummer: 3.3206), Werkstoffzustand T66 nach DIN EN 755-2¹⁷, in Verbindung mit

14 DIN EN 15651-2:2012-12

Fugendichtstoffe für nicht tragende Anwendungen in Gebäuden und Fußgängerwegen -- Teil 2: Fugendichtstoffe für Verglasungen

¹⁵ DIN EN 15088:2006-03

Aluminium und Aluminiumlegierungen – Erzeugnisse für Tragwerksanwendungen – technische Lieferbedingungen

Seite 8 von 23 | 7. September 2020

- sog. Haltewinkeln, bestehend aus 40 mm langen Winkelprofilen aus vorgenannter Aluminiumlegierung mit Abmessungen von 15 mm (Ansichtsbreite) x 30 mm x 2 mm, in Verbindung mit Stahlschrauben Ø ≥ 3,5 mm x 30 mm und
- speziellen POM-Profilen, sog. Drehhaltern (Typ DH 4-8) der Firma GUTMANN Bausysteme GmbH, Weißenburg, in Verbindung mit Stahlschrauben Ø ≥ 3,5 mm x 30 mm.
- b) Profile aus Holz für die sonstigen Ausführungen

Es sind Profile aus

- Vollholz nach DIN EN 14081-1⁴ in Verbindung mit DIN 20000-5⁵ aus
 - Nadelholz (charakteristischer Wert der Rohdichte ρ_κ ≥ 420 kg/m³) oder
 - Laubholz (charakteristischer Wert der Rohdichte ρ_κ ≥ 500 kg/m³) oder
- Brettschichtholz nach DIN EN 14080⁶ in Verbindung mit DIN 20000-3⁷, charakteristischer Wert der Rohdichte ρ_κ ≥ 500 kg/m³,

mit Mindestabmessungen von 18 mm x 18 mm, in Verbindung mit Stahlschrauben $\emptyset \ge 3,5$ mm, zu verwenden.

2.1.1.3 Befestigungsmittel

2.1.1.3.1 Für die Befestigung der Rahmenprofile der Brandschutzverglasung an den angrenzenden Massivbauteilen müssen Dübel gemäß allgemeiner bauaufsichtlicher Zulassung bzw. gemäß europäischer technischer Zulassung oder Bewertung, jeweils mit Stahlschrauben, Ø ≥ 7,0 mm, - gemäß den statischen Erfordernissen - verwendet werden.

2.1.1.3.2 Für die Befestigung der Rahmenprofile der Brandschutzverglasung an den

- Ständerprofilen der seitlich angrenzenden Wand aus Gipsplatten,
- angrenzenden bekleideten Stahlbauteilen und
- angrenzenden unbekleideten Holzbauteilen

sind geeignete Befestigungsmittel - gemäß den statischen Erfordernissen - zu verwenden.

2.1.1.4 Fugenmaterialien

2.1.1.4.1 Sonstige Dichtungen

Bei Verwendung von Ausfüllungen vom Typ A nach Abschnitt 2.1.1.5.1 ist für die Dichtung im Falzgrund ein mindestens normalentflammbarer² Silikon-Dichtstoff nach DIN EN 15651-2¹⁴ zu verwenden.

2.1.1.4.2 Fugenmaterialien für Anschlussfugen

Für alle Fugen zwischen dem Rahmen der Brandschutzverglasung und den angrenzenden Bauteilen müssen nichtbrennbare² Baustoffe verwendet werden, z. B.

- Mörtel aus mineralischen Baustoffen oder
- Mineralwolle¹⁸ nach DIN EN 13162¹⁹.

Für das optionale Versiegeln bzw. Abdecken der vorgenannten Fugen darf/dürfen

- ein mindestens normalentflammbarer² Silikon-Dichtstoff nach DIN EN 15651-2¹⁴ bzw.
- Deckleisten aus mindestens normalentflammbaren² Baustoffen

16	DIN EN 12020-1:2008-03	Aluminium und Aluminiumlegierungen - Stranggepresste Präzisionsprofile aus Legierungen EN AW-6060 und EN AW-6063 - Teil 1: Technische Lieferbedingun-
		gen
17	DIN EN 755-2:2016-10	Aluminium und Aluminiumlegierungen - Stranggepresste Stangen, Rohre und Pro-
		file - Teil 2: Mechanische Eigenschaften
18	Im allgemeinen Bauartgene	hmigungsverfahren wurde der Regelungsgegenstand mit Mineralwolle nachgewiesen,
	die folgende Leistungsmerki	male/Kennwerte aufwies: nichtbrennbar, Schmelzpunkt > 1000°C.
19	DIN EN 13162:2015-04	Wärmedämmstoffe für Gebäude - Werkmäßig hergestellte Produkte aus
		Mineralwolle (MW) - Spezifikation

Seite 9 von 23 | 7. September 2020

verwendet werden.

Wahlweise darf für die vorgenannten Fugen ein schwerentflammbarer² Fugendichtschaum gemäß allgemeinem bauaufsichtlichen Prüfzeugnis Nr. P-NDS04-514 in Verbindung mit vorgenanntem Silikon-Dichtstoff verwendet werden.

2.1.1.5 Sonstige Bestandteile

2.1.1.5.1 Bauprodukte für Ausfüllungen

Werden in einzelnen Teilflächen der Brandschutzverglasung (z. B. im Brüstungs- oder Zwischendeckenbereich) nach Abschnitt 1.2.7 Ausfüllungen anstelle von Scheiben angeordnet, sind hierfür solche der Typen A bis C mit den maximalen Abmessungen nach Tabelle 2 auszuführen.

Tabelle 2

Ausfüllungstyp	maximale Abmessungen [mm]	Format	Anlage
A	1250 x 3000		
В	1500 x 3000	Hoch- oder Querformat	11
С	1250 x 2500		12

Die Ausfüllungen müssen im Wesentlichen unter Verwendung folgender Bauprodukte ausgeführt werden:

für Typ A:

≥ 20 mm dicke, nichtbrennbare² Brandschutzplatten vom Typ "PROMATECT-H" mit der Leistungserklärung Nr. 0749-CPR-06/0206-2018/3 vom 24. Januar 2019.

für Typ B:

- ≥ 75 mm dicke, zu den Rahmenprofilen flächenbündige Ausfüllungen:
- vier (zwei + zwei) ≥ 12,5 mm dicke, nichtbrennbare² Gipsplatten, Typ DF nach DIN EN 520²0, ²¹,
- Leisten aus Vollholz nach DIN EN 14081-14 in Verbindung mit DIN 20000-55 aus
 - Nadelholz (charakteristischer Wert der Rohdichte ρ_κ ≥ 420 kg/m³) oder
 - − Laubholz (charakteristischer Wert der Rohdichte $ρ_κ ≥ 500$ kg/m³) mit Abmessungen ≥ 25 mm x ≥ 25 mm und
- Stahlschrauben \emptyset ≥ 3,5 mm x 40 mm.

für Typ C:

≥ 70 mm dicke Ausfüllungen:

- zwei ≥ 15 mm dicke normalentflammbare² OSB-Platten nach DIN EN 13986²² und DIN EN 300²³ vom Typ "OSB/3", Rohdichte ≥ 600 kg/m³,
- Leisten aus Nadelholz nach DIN EN 14081-1⁴ in Verbindung mit DIN 20000-5⁵, charakteristischer Wert der Rohdichte $\rho_{\kappa} \ge 420 \text{ kg/m}^3$, mit Abmessungen ≥ 25 mm x ≥ 40 mm,
- Stahlschrauben Ø ≥ 4,0 mm x 40 mm,

20 21	DIN EN 520:2009-12 DIN 18180:2014-09	Gipsplatten – Begriffe, Anforderungen und Prüfverfahren Gipsplatten; Arten, Anforderungen
22	DIN EN 13986:2015-06	Holzwerkstoffe zur Verwendung im Bauwesen - Eigenschaften, Bewertung der
23	DIN EN 300:2006-09	Konformität und Kennzeichnung Platten aus langen, flachen, ausgerichteten Spänen (OSB) - Definitionen, Klassifizierung und Anforderungen

Seite 10 von 23 | 7. September 2020

- U-förmige Klammern vom Typ "PREBENA Heftklammern d = 1,52 mm" mit der Leistungserklärung Nr. 421608 vom 31.08.2016, aus verzinktem Stahldraht, Rückenbreite ≥ 11,2 mm, Länge ≥ 60 mm und
- ≥ 40 mm dicke normalentflammbare² Holzfaserplatten nach DIN EN 13171²⁴ vom Typ "STEICOtherm", Rohdichte ≥ 160 kg/m³.

2.1.1.5.2 Bauprodukte für Holzverbindungen

Für die Verbindungen der Holzprofile bei Ausführung

- mit Eckausbildungen nach Abschnitt 1.2.8,
- in Verbindung mit Feuerschutzabschlüssen nach Abschnitt 1.2.9 und
- in Verbindung mit Fenstern mit Feuer- und Rauchschutzeigenschaften nach Abschnitt 1.2.10

sind folgende Bauprodukte zu verwenden:

- Stahlschrauben Ø ≥ 5 mm,
- ggf. Verbindungsfedern aus
 - Vollholz nach DIN EN 14081-1⁴ in Verbindung mit DIN 20000-5⁵, charakteristischer Wert der Rohdichte $ρ_κ ≥ 450 \text{ kg/m³}$, Abmessungen: ≥ 13 mm x ≥ 5 mm (Breite x Dicke) oder
 - Faserplatten nach DIN EN 13986²² und DIN EN 622-5²⁵ vom Typ "MDF", Rohdichte ≥ 600 kg/m³, Abmessungen: ≥ 13 mm x ≥ 5 mm (Breite x Dicke),
- ggf. geeigneter Kleber (Leim) auf Basis von Polyvinylacetat (PVAC) oder Polyurethan (PUR), jeweils nach DIN EN 923⁸, Beanspruchungsgruppe
 - D4 nach DIN EN 2049 oder
 - C4 nach DIN EN 12765¹⁰.

2.1.1.5.3 Bauprodukte für die Ausführung mit gleitendem Deckenanschluss

Es sind folgende Bauprodukte zu verwenden:

- jeweils zwei Streifen aus Flachstahl nach DIN EN 10025-2²6 und DIN EN 10058²7, Stahlsorte S235JR (Werkstoffnummer: 1.0038), Abmessungen ≥ 90 mm x ≥ 2 mm,
- 230 mm dicke Profile aus Vollholz nach DIN EN 14081-1⁴ in Verbindung mit DIN 20000-5⁵ aus
 - − Nadelholz (charakteristischer Wert der Rohdichte $ρ_κ ≥ 420 \text{ kg/m}^3$) und/oder
 - Laubholz (charakteristischer Wert der Rohdichte ρ_κ ≥ 500 kg/m³),
- nichtbrennbare² Mineralwolle¹⁸ nach DIN EN 13162¹⁹ und
- Stahlschrauben Ø ≥ 4,0 mm x ≥ 50 mm.

2.1.1.5.4 Bauprodukte für Oberflächenbekleidungen

Die Rahmenprofile nach Abschnitt 2.1.1.1.1, die Glashalteleisten aus Holz nach Abschnitt 2.1.1.2.4, die Ausfüllungen nach Abschnitt 2.1.1.5.1 und die vertikalen Fugen zwischen nebeneinander anzuordnenden Scheiben (sog. Stoßfugenverglasung) dürfen an den Sichtseiten mit mindestens normalentflammbaren² Baustoffen bekleidet werden.

24	DIN EN 13171:2015-04	Wärmedämmstoffe für Gebäude - Werkmäßig hergestellte Produkte aus Holzfasern (WF) - Spezifikation
25	DIN EN 622-5:2010-03	Faserplatten – Anforderungen - Teil 5: Anforderungen an Platten nach dem Trockenverfahren (MDF)
26	DIN EN 10025-2:2005-04	Warmgewalzte Erzeugnisse aus Baustählen; Teil 2: Technische Lieferbedingungen für unlegierte Baustähle
27	DIN EN 10058:2019-02	Warmgewalzte Flachstäbe aus Stahl und Breitflachstahl für allgemeine Verwendung – Maße, Formtoleranzen und Grenzabmaße

287499.19 1.19.14-333/19

Seite 11 von 23 | 7. September 2020

2.1.2 Entwurf

2.1.2.1 Ausführung mit Feuerschutzabschlüssen

Die Brandschutzverglasung ist bei Innenanwendung in Verbindung mit folgenden Feuerschutzabschlüssen nachgewiesen:

- T 30-1-FSA "HOBA Typ 1" bzw.
- T 30-1-RS-FSA "HOBA Typ 1" bzw.
- T 30-2-FSA "HOBA Typ 2" bzw.
- T 30-2-RS-FSA "HOBA Typ 2"

gemäß allgemeiner bauaufsichtlicher Zulassung/allgemeiner Bauartgenehmigung Nr. Z-6.20-1962

2.1.2.2 Ausführung mit Fenstern mit Feuer- und Rauchschutzeigenschaften

Die Brandschutzverglasung ist bei Anwendung als Außenwand bzw. in Außenwänden in Verbindung mit dem einflügeligen Drehflügelfenster mit Feuer- und Rauchschutzeigenschaften "TSH feuerhemmendes Brandschutzfenster mit Öffnungsflügel" nach DIN EN 16034²⁸ in Verbindung mit DIN EN 14351-1²⁹ (s. Mitteilung der Europäischen Kommission³⁰), das

- aus mindestens normalentflammbaren² Baustoffen besteht,
- in der Leistungserklärung die Klassifizierung EI₂ 30-S₂₀₀C2² und keine Fähigkeit zur Freigabe und
- außerdem ein Differenzklimaverhalten mindestens der Klasse 2d/2e

aufweist sowie die CE-Kennzeichnung trägt, nachgewiesen:

Über die Zulässigkeit der Verwendung von Fenstern mit Feuer- und Rauchschutzeigenschaften in Außenwänden, insbesondere hinsichtlich Ausführung, Anordnung und Größe entscheidet die zuständige Bauaufsichtsbehörde in jedem Verwendungsfall, sofern nicht bauaufsichtliche Vorschriften die Zulässigkeit regeln.

Das Fenster mit Feuer- und Rauchschutzeigenschaften "TSH feuerhemmendes Brandschutzfenster mit Öffnungsflügel" wurde mit den Abmessungen nach Tabelle 3 in der Brandschutzverglasung in brandschutztechnischer Hinsicht nachgewiesen.

Tabelle 3

29

Rahmenaußenmaß RAM [mm] Lichtes Maß LM [mm]	Breite B [mm] von/bis	400-1072
	Höhe H [mm] von/bis	600-2093
	Breite B [mm] von/bis	216-914
	Höhe H [mm] von/bis	324-1914

Weitere Nachweise der Gebrauchstauglichkeit sind mit dieser allgemeinen Bauartgenehmigung nicht erbracht.

Für die Anwendung der Brandschutzverglasung in Verbindung mit dem Fenster mit Feuerund Rauchschutzeigenschaften "TSH feuerhemmendes Brandschutzfenster mit Öffnungsflügel" gilt:

- Die für den Anwendungsfall erforderlichen Leistungsmerkmale nach DIN EN 14351-1²⁹
 (z. B. Wärme- und/oder Schallschutz, Gebrauchstauglichkeit) müssen nachgewiesen sein.
- Die Anwendung einer Feststellanlage ist nicht zulässig.

DIN EN 16034:2014-12 Türen, Tore und Fenster – Produktnorm, Leistungseigenschaften – Feuer- und/oder Rauschutzeigenschaften

DIN EN 14351-1:2016-12 Fenster und Türen - Produktnorm, Leistungseigenschaften- Teil1: Fenster und Außentüren

Amtsblatt der Europäischen Union C92 vom 09.03.2018: Mitteilung der Kommission 2018/C092/06

Seite 12 von 23 | 7. September 2020

2.2 Bemessung

2.2.1 Standsicherheit und diesbezügliche Gebrauchstauglichkeit

2.2.1.1 Allgemeines

Für jeden Anwendungsfall ist in einer statischen Berechnung die ausreichende Bemessung aller statisch beanspruchten Teile der Brandschutzverglasung sowie deren Anschlüsse für die Beanspruchbarkeit der Brandschutzverglasung unter Normalbedingungen, d. h. nicht unter gleichzeitiger Berücksichtigung des Brandfalles, nachzuweisen.

Die Bauteile über der Brandschutzverglasung (z. B. ein Sturz) müssen statisch und brandschutztechnisch so bemessen werden, dass die Brandschutzverglasung - außer ihrem Eigengewicht - keine zusätzliche vertikale Belastung erhält.

Für die Brandschutzverglasung ist im Zuge der statischen Berechnung nachzuweisen, dass die möglichen Einwirkungen nach Abschnitt 2.2.1.2 auf die Gesamtkonstruktion - d. h. für den Rahmen, die Scheiben, die Glashalterungen sowie die Anschlüsse an die angrenzenden Bauteile - unter Einhaltung der in den Fachnormen geregelten Beanspruchbarkeiten und zulässigen Durchbiegungen (s. Abschnitte 2.2.1,2 und 2.2.1.3) aufgenommen werden können.

Sofern der obere seitliche Anschluss der Brandschutzverglasung an Massivbauteile gemäß den Anlagen 1 und 2 schräg oder gerundet ausgeführt wird, darf die Brandschutzverglasung auch in diesem Bereich (außer ihrem Eigengewicht) keine Belastung erhalten.

2.2.1.2 Einwirkungen

2.2.1.2.1 Es sind die Einwirkungen gemäß den "Hinweisen zur Führung von Nachweisen der Standsicherheit und Gebrauchstauglichkeit für Brandschutzverglasungen nach allgemeinen bauaufsichtlichen Zulassungen", veröffentlicht unter www.dibt.de, zu berücksichtigen.

2.2.1.2.2 Anwendung als Außenwand bzw. in Außenwänden

Es sind die möglichen Einwirkungen auf die Konstruktion nach Technischen Baubestimmungen (z. B. DIN EN 1991-1-4³¹ und DIN EN 1991-1-4/NA³², DIN 18008-1³³ und DIN 18008-2³⁴) zu berücksichtigen.

2.2.1.2.3 Anwendung als Innenwand bzw. in Innenwänden

Die Nachweise der Standsicherheit und Gebrauchstauglichkeit sind entsprechend DIN 4103-1 35 (Durchbiegungsbegrenzung \leq H/200, Einbaubereiche 1 und 2) zu führen.

Abweichend von DIN 4103-135

- sind ggf. die Einwirkungen von Horizontallasten nach DIN EN 1991-1-1³⁶ und DIN EN 1991-1-1/NA³⁷ und von Windlasten nach DIN EN 1991-1-4³¹ und DIN EN 1991-1-4/NA³² zu berücksichtigen,
- darf der weiche Stoß experimentell durch Pendelschlagversuche mit einem Doppelzwillingsreifen nach DIN 18008-4³⁸ mit G = 50 kg und einer Fallhöhe von 45 cm (wie Kategorie C nach DIN 18008-4³⁸) erfolgen.

31	DIN EN 1991-1-4;2010-12	Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-4: Allgemeine Einwirkungen - Windlasten
32	DIN EN 1991-1-4/NA:2010-12	Nationaler Anhang - National festgelegte Parameter - Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-4: Allgemeine Einwirkungen - Windlasten
33	DIN 18008-1:2010-12	Glas im Bauwesen - Bemessungs- und Konstruktionsregeln - Teil 1: Begriffe und allgemeine Grundlagen
34	DIN 18008-2:2010-12	Glas im Bauwesen - Bemessungs- und Konstruktionsregeln - Teil 2: Linienförmig gelagerte Verglasungen
35	DIN 4103-1:2015-06	Nichttragende innere Trennwände - Teil 1: Anforderungen und Nachweise
36	DIN EN 1991-1-1:2010-12	Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-1: Allgemeine Einwirkungen auf Tragwerke - Wichten, Eigengewicht und Nutzlasten im Hochbau
37	DIN EN 1991-1-1/NA:2010-12	Nationaler Anhang - National festgelegte Parameter - Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-1: Allgemeine Einwirkungen auf Tragwerke - Wichten, Eigengewicht und Nutzlasten im Hochbau

Seite 13 von 23 | 7. September 2020

2.2.1.3 Nachweise der einzelnen Bestandteile der Brandschutzverglasung

2.2.1.3.1 Nachweis der Scheiben

Die Standsicherheits- und Durchbiegungsnachweise für die Scheiben sind nach DIN 18008-1³³ und DIN 18008-2³⁴ für die im Anwendungsfall geltenden Verhältnisse zu führen.

2.2.1.3.2 Nachweis der Rahmenkonstruktion

Bei den - auch in den Anlagen dargestellten - Rahmenprofilen und Glashalterungen nach den Abschnitten 2.1.1.1 und 2.1.1.2.4 handelt es sich um Mindestquerschnittsabmessungen zur Erfüllung der Anforderungen der Feuerwiderstandsklasse F 30 der Brandschutzverglasung; Nachweise der Standsicherheit und Gebrauchstauglichkeit bleiben davon unberührt und sind für die im Anwendungsfall geltenden Verhältnisse nach Technischen Baubestimmungen zu führen.

Für die zulässige Durchbiegung der Rahmenkonstruktion sind zusätzlich DIN 18008-1³³ und DIN 18008-2³⁴ zu beachten.

Der maximal zulässige Abstand der ungestoßen über die gesamte Höhe der Brandschutzverglasung durchgehenden Pfosten ergibt sich - unter Berücksichtigung der vorgenannten und nachfolgenden Bestimmungen - aus den maximal zulässigen Abmessungen einer Scheibe bzw. ggf. Ausfüllung, jeweils im Querformat.

2.2.1.3.3 Nachweis der Befestigungsmittel

Beim Nachweis der Befestigung der Rahmenprofile der Brandschutzverglasung an den angrenzenden Massivbauteilen dürfen nur Dübel gemäß allgemeiner bauaufsichtlicher Zulassung bzw. gemäß europäischer technischer Zulassung oder Bewertung, jeweils mit Stahlschrauben, verwendet werden.

Beim Nachweis der Befestigung der Rahmenprofile der Brandschutzverglasung an den

- Ständerprofilen der seitlich angrenzenden Wand aus Gipsplatten,
- angrenzenden bekleideten Stahlbauteilen und
- angrenzenden unbekleideten Holzbauteilen

sind geeignete Befestigungsmittel zu verwenden.

2.2.1.3.4 Nachweis der Ausfüllungen

Bei den - auch in den Anlagen dargestellten - Ausfüllungen nach Abschnitt 2.1.1.5.1 handelt es sich um Mindestquerschnittsabmessungen zur Erfüllung der Anforderungen der Feuerwiderstandsklasse F 30 der Brandschutzverglasung; Nachweise der Standsicherheit einschließlich der Absturzsicherung und Gebrauchstauglichkeit bleiben davon unberührt und sind für den Anwendungsfall nach Technischen Baubestimmungen oder nach allgemeinen bauaufsichtlichen Zulassungen/allgemeinen Bauartgenehmigungen zu führen.

2.2.1.3.5 Zusätzliche Nachweise bei Ausführung der Brandschutzverglasung in Verbindung mit Feuerschutzabschlüssen und Fenstern mit Feuer- und Rauchschutzeigenschaften

Die Bemessung der Gesamtkonstruktion hat so zu erfolgen, dass die Erhaltung der Funktionsfähigkeit, d. h. ein freies Schließen der/des Flügel/s - ohne Aufsetzen -, gewährleistet ist (s. auch Anlagen 2, 21, 22 und 25).

Seite 14 von 23 | 7. September 2020

2.2.2 Wärmeschutz

Der Bemessungswert U des Wärmedurchgangskoeffizienten der Brandschutzverglasung ist nach DIN EN ISO 12631³⁹ unter Berücksichtigung folgender Festlegungen zu ermitteln.

- Für die Scheiben aus Mehrscheiben-Isolierglas der Brandschutzverglasung gilt der im Rahmen der CE-Kennzeichnung vom Hersteller in der Leistungserklärung deklarierte Wärmedurchgangskoeffizient (Nennwert) als Bemessungswert Ug des Wärmedurchgangskoeffizienten.
- Der längenbezogene Wärmedurchgangskoeffizient Ψ ist nach DIN EN ISO 12631³⁹, Anhang B, zu ermitteln.

Für den Gesamtenergiedurchlassgrad g und den Lichttransmissionsgrad τ_V gelten die Bestimmungen der Norm DIN 4108-4 40 .

2.2.3 Weitere Nachweise der Gebrauchstauglichkeit

Für Brandschutzverglasungen (ohne Ausfüllungen) unter Verwendung von Rahmenprofilen mit einseitig ausgefrästem Profilanschlag (zur Glashalterung) gemäß den Anlagen 4 bis 6 (jeweils Ausführung mit Vorlegeband/Dichtungsstreifen und Silikon-Versiegelung gemäß Anlage 4) und einer maximalen Fläche von 2,2 m² wurden folgende Eigenschaften nachgewiesen:

Luftdurchlässigkeit nach DIN EN 12207⁴¹:

Klasse 4

Schlagregendichtheit nach DIN EN 12208⁴²:

Klasse E₁₈₀₀

Widerstand gegen Windlast nach DIN EN 12210⁴³:

Klasse C5

2.2.4 Absturzsicherung

Sofern nach bauaufsichtlichen Vorschriften Anforderungen an die Absturzsicherheit ohne Brandeinwirkung³ gestellt werden, sind die folgenden Bestimmungen zu beachten:

- Es sind die entsprechenden Einwirkungen und die Maßgaben, die sich aus den Technischen Baubestimmungen ergeben, zu berücksichtigen³.
- Bei der Bemessung ist zu berücksichtigen, dass die Scheiben nicht zur Abtragung von Lasten dienen dürfen, sondern ggf. nur die Pfosten-Riegel-Konstruktion der Brandschutzverglasung.
- Beim Entwurf und bei der Bemessung ist daher davon auszugehen, dass die entsprechenden Lasten über eine vorgesetzte oder integrierte Konstruktion, die an der Pfosten-Riegel-Konstruktion der Brandschutzverglasung befestigt ist (z. B. eine Geländerkonstruktion), direkt und ausschließlich durch die Pfosten-Riegel-Konstruktion aufgenommen werden.

Die Bestimmungen dieser allgemeinen Bauartgenehmigung bleiben unberührt.

2.3 Ausführung

2.3.1 Allgemeines

- 2.3.1.1 Die Brandschutzverglasung muss am Anwendungsort
 - aus den Bauprodukten nach Abschnitt 2.1.1, unter der Voraussetzung, dass diese

39	DIN EN ISO 12631:2018-10	Wärmetechnisches Verhalten von Vorhangfassaden - Berechnung des Wärme-
40	DIN 4108-4:2017-03	durchgangskoeffizienten Wärmeschutz und Energie-Einsparung in Gebäuden – Teil 4: Wärme- und feuchte- schutztechnische Bemessungswerte
41	DIN EN 12207:2000-06	Fenster und Türen; Luftdurchlässigkeit; Klassifizierung
42	DIN EN 12208:2000-06	Fenster und Türen; Schlagregendichtheit; Klassifizierung
43	DIN EN 12210:2003-08	Fenster und Türen; Widerstandsfähigkeit bei Windlast; Klassifizierung

Seite 15 von 23 | 7. September 2020

- den jeweiligen Bestimmungen der vorgenannten Abschnitte entsprechen und
- verwendbar sind im Sinne der Bestimmungen zu den Bauprodukten in der jeweiligen Landesbauordnung sowie
- unter Berücksichtigung der Ergebnisse der Bemessung nach Abschnitt 2.2 und
- nur von solchen Unternehmen, die ausreichende Erfahrungen auf diesem Gebiet haben und entsprechend geschultes Personal dafür einsetzen,

errichtet werden.

Der Antragsteller hat hierzu

- die ausführenden Unternehmen über die Bestimmungen der allgemeinen Bauartgenehmigung und die Errichtung des Reglungsgegenstandes zu unterrichten, zu schulen und ihnen in ständigem Erfahrungsaustausch zur Verfügung zu stehen und
- eine Liste der Unternehmen zu führen, die aufgrund seiner Unterweisungen ausreichende Fachkenntnisse besitzen, den Regelungsgegenstand auszuführen. Diese Liste ist dem Deutschen Institut für Bautechnik vorzulegen; Änderungen daran sind ihm mitzuteilen
- 2.3.1.2 Der Transport der Glasscheiben darf nur mit geeigneten Transporthilfen durchgeführt werden, die eine Verletzung der Glaskanten ausschließen. Bei Zwischenlagerung an der Baustelle sind geeignete Unterlagen zum Schutz der Glaskanten vorzusehen, ebenso sind große Temperaturschwankungen und Einwirkung von Feuchtigkeit zu vermeiden.

2.3.2 Zusammenbau

- 2.3.2.1 Zusammenbau des Rahmens
- 2.3.2.1.1 Für den Rahmen der Brandschutzverglasung, bestehend aus Pfosten und Riegeln, sind Holzprofile nach Abschnitt 2.1.1.1.1 und entsprechend den Anlagen 3 bis 7, 14 bis 16, 21, 22 und 25 zu verwenden. Zwischen den über die gesamte Höhe der Brandschutzverglasung ungestoßen durchgehenden Pfosten sind die Riegel einzusetzen. Die Rahmenecken sowie die T- und Kreuzstöße der Profile sind unter Verwendung von Befestigungsmitteln nach Abschnitt 2.1.1.1.2 a) als zu verleimende Zapfen- oder Dübelverbindungen entsprechend den Anlagen 18 und 19 auszuführen.

2.3.2.1.2 Sofern

- verstärkte bzw. zusammengesetzte Pfostenprofile verwendet werden bzw.
- Rahmen seitlich aneinandergereiht werden bzw.
- Pfostenprofile mit sog. Schattennut ausgeführt werden,

sind die Holzprofile durch

- Leim und Stahlschrauben (Abstände ≤ 200 mm vom Rand und ≤ 1000 mm untereinander) sowie
- ggf. durchgehende Verbindungsfedern,

jeweils nach Abschnitt 2.1.1.1.2 b), miteinander zu verbinden (s. Anlagen 6 und 7).

- 2.3.2.2 Verglasung
- 2.3.2.2.1 Die Scheiben sind am unteren Rand jeweils auf mindestens zwei Klötzchen nach Abschnitt 2.1.1.2.2 abzusetzen (s. Anlage 5).
- 2.3.2.2.2 Bei Ausführung mit Glashalteleisten aus Vollholz und aus Aluminiumlegierung entsprechend Anlage 23 sind/ist
 - die Scheiben aus Mehrscheiben-Isolierglas so anzuordnen, dass sich der Scheibenzwischenraum (SZR) stets auf der Seite der Glashalteleisten aus Aluminiumlegierung befindet,
 - zwischen den Stirnseiten der vorgenannten Scheiben und den Rahmenprofilen (im Falzgrund) umlaufend Dichtungsstreifen nach Abschnitt 2.1.1.2.3 a) anzuordnen,

Seite 16 von 23 | 7. September 2020

- in den seitlichen Fugen zwischen den vorgenannten Scheiben und den Glashalteleisten aus Aluminiumlegierung umlaufend Dichtungsprofile nach Abschnitt 2.1.1.2.3 c) zu verwenden,
- in den seitlichen Fugen zwischen den vorgenannten Scheiben und den Glashalteleisten aus Vollholz (Ausführung mit sog. Silikontaschen) umlaufend ein Silikon-Dichtstoff nach Abschnitt 2.1.1.2.3 c) zu verwenden.

Bei Ausführung als sog. Stoßfugenverglasung entsprechend Anlage 8 sind in den \leq 6 mm breiten, vertikalen Fugen zwischen den nebeneinander anzuordnenden Scheiben jeweils zwei durchgehende Dichtungsstreifen nach Abschnitt 2.1.1.2.3 e) mittig anzuordnen. Die Fugen sind abschließend mit einem Silikon-Dichtstoff nach Abschnitt 2.1.1.2.3 e) zu versiegeln.

Bei den sonstigen Ausführungen (siehe auch Anlagen 3 bis 6) sind

- zwischen den Stirnseiten der Scheiben und den Rahmenprofilen (im Falzgrund) umlaufend Streifen des im Brandfall aufschäumenden Bauprodukts nach Abschnitt 2.1.1.2.3 b) anzuordnen,
- in allen seitlichen Fugen zwischen den Scheiben und den Glashalteleisten aus Holz bzw. den Rahmenprofilen umlaufend Dichtungsstreifen oder Vorlegebänder, jeweils nach Abschnitt 2.1.1.2.3 d), zu verwenden. Die Fugen sind abschließend mit einem Silikon-Dichtstoff nach Abschnitt 2.1.1.2.3 d) umlaufend zu versiegeln. Bei Ausführung der Glashalteleisten mit sog. Silikontaschen entsprechend den Anlagen 3 bis 7 und 20 ist ausschließlich der vorgenannte Silikon-Dichtstoff umlaufend zu verwenden.

2.3.2.2.3 Befestigung der Glashalteleisten

Bei Ausführung mit Glashalteleisten aus Vollholz und Aluminiumlegierung entsprechend Anlage 23 sind die

- Glashalteleisten aus Vollholz nach Abschnitt 2.1.1.2.4 a) mit den Stahlschrauben, in Abständen ≤ 50 mm vom Rand und ≤ 250 mm untereinander, an den Rahmenprofilen zu befestigen.
- sog. Haltewinkel nach Abschnitt 2.1.1.2.4 a) in Abständen ≤ 150 mm vom Rand und ≤ 400 mm untereinander auf den Rahmenprofilen anzuordnen und mit jeweils zwei Stahlschrauben an diesen zu befestigen.
- sog. Drehhalter nach Abschnitt 2.1.1.2.4 a) in Abständen ≤ 200 mm bzw. ≤ 400 mm auf den Rahmenprofilen anzuordnen und mit jeweils einer Stahlschraube an diesen zu befestigen.
- stranggepressten Profile aus Aluminiumlegierung nach Abschnitt 2.1.1.2.4 a) auf die vorgenannten Haltewinkel und Drehhalter aufzustecken bzw. aufzuklipsen.

Bei den sonstigen Ausführungen (siehe auch Anlagen 3 bis 6 und 20) sind die Glashalteleisten aus Holz nach Abschnitt 2.1.1.2.4 b) mit den Stahlschrauben in Abständen \leq 400 mm an den Rahmenprofilen zu befestigen.

2.3.2.2.4 Glaseinstände

Bei Ausführung entsprechend Anlage 23 muss der Glaseinstand der Scheiben aus Mehrscheiben-Isolierglas in den

- Glashalteleisten aus Vollholz längs aller Ränder ≥ 15 mm,
- stranggepressten Profilen aus Aluminiumlegierung längs aller Ränder ≥ 14 mm,
- sog. Haltewinkeln längs aller Ränder ≥ 10 mm

betragen.

Bei Ausführung als sog. Stoßfugenverglasung entsprechend Anlage 8 muss der Glaseinstand der Verbundglasscheiben in den Glashalteleisten aus Holz bzw. den Rahmenprofilen längs aller Ränder ≥ 13 mm betragen.

Seite 17 von 23 | 7. September 2020

Bei den sonstigen Ausführungen (s. auch Anlagen 3 bis 5) muss der Glaseinstand der Scheiben in den Glashalteleisten aus Holz bzw. den Rahmenprofilen längs aller Ränder $14 \text{ mm} \pm 1,5 \text{ mm}$ betragen.

2.3.2.3 Sonstige Ausführungen

2.3.2.3.1 Ausfüllungen

Werden in einzelnen Teilflächen der Brandschutzverglasung (z. B. im Brüstungs- oder Zwischendeckenbereich) nach Abschnitt 1.2.7 Ausfüllungen anstelle von Scheiben angeordnet, sind hierfür Bauprodukte nach Abschnitt 2.1.1.5.1 zu verwenden. Die Ausführung muss entsprechend den Anlagen 11 und 12 erfolgen.

a) Einbau der Ausfüllungen vom Typ A

Zwischen den Stirnseiten der Ausfüllungen und den Rahmenprofilen (im Falzgrund) sind die Eckbereiche umlaufend mit einem Silikon-Dichtstoff nach Abschnitt 2.1.1.4.1 abzudichten.

Der Einstand der Ausfüllungen in den Glashalteleisten bzw. den Rahmenprofilen muss längs aller Ränder ≥ 13 mm betragen.

b) Zusammen- und Einbau der Ausfüllungen vom Typ B

Die Leisten aus Vollholz sind mittig der Rahmenprofile anzuordnen und an diesen mit Stahlschrauben in Abständen \leq 400 mm zu befestigen. Die Gipsplatten sind an den vorgenannten Leisten mit Stahlschrauben in Abständen \leq 400 mm zu befestigen.

c) Zusammen- und Einbau der Ausfüllungen vom Typ C

Die Leisten aus Nadelholz sind mittig der Rahmenprofile anzuordnen und an diesen mit Stahlschrauben in Abständen ≤ 400 mm zu befestigen. Die OSB-Platten sind an den vorgenannten Leisten mit Stahlschrauben in Abständen ≤ 400 mm zu befestigen und durch Klammern in Abständen gemäß Anlage 12 miteinander zu verbinden. Der Hohlraum zwischen den OSB-Platten ist mit den Holzfaserplatten auszufüllen.

2.3.2.3.2 Eckausbildungen

Die Ausführung der Brandschutzverglasung mit auf den Grundriss bezogenen Eckausbildungen ist nur unter Berücksichtigung folgender Bestimmungen zulässig:

- Die Eckpfosten (aus Vollholz nach Abschnitt 2.1.1.1.1) m
 üssen Profiltiefen ≥ 75 mm aufweisen.
- Als Glashalteleisten sind Profile aus Vollholz nach Abschnitt 2.1.1.2.4 b) zu verwenden.
- Der Abstand von einer Eckausbildung zu einem Feuerschutzabschluss nach Abschnitt 2.1.2 muss ≥ 200 mm (Innenmaß) betragen.

Diese Ecken sind entsprechend den Anlagen 9 und 10 auszubilden.

Die Eckpfosten müssen ungestoßen über die gesamte Höhe der Brandschutzverglasung durchgehen und über zweireihig anzuordnende Stahlschrauben (Abstände ≤ 1000 mm) nach Abschnitt 2.1.1.5.2 miteinander verbunden werden.

2.3.2.3.3 Einbau von Feuerschutzabschlüssen

Sofern die Brandschutzverglasung in Verbindung mit Feuerschutzabschlüssen nach Abschnitt 2.1.2.1 ausgeführt wird, sind die Anschlüsse entsprechend den Anlagen 21 und 22 auszubilden.

Die unmittelbar seitlich neben den Feuerschutzabschlüssen anzuordnenden Pfosten der Brandschutzverglasung müssen ungestoßen über die gesamte Höhe der Brandschutzverglasung durchgehen. Die oberen horizontalen Zargenprofile dienen gleichzeitig als Riegelprofile der Brandschutzverglasung.

Die vertikal verlaufenden Zargenprofile sind an den Pfostenprofilen der Brandschutzverglasung unter Verwendung von Stahlschrauben (Abstände ≤ 1000 mm), durchgehenden Verbindungsfedern aus Vollholz und Leim, jeweils nach Abschnitt 2.1.1.5.2, zu befestigen.

Seite 18 von 23 | 7. September 2020

2.3.2.3.4 Einbau von Fenstern mit Feuer- und Rauchschutzeigenschaften

a) Ausbildung der Anschlüsse

Falls die Brandschutzverglasung in Verbindung mit Fenstern mit Feuer- und Rauchschutzeigenschaften nach Abschnitt 2.1.2.2 ausgeführt wird, sind die Anschlüsse entsprechend Anlage 25 auszubilden.

Die unmittelbar seitlich neben den Fenstern anzuordnenden Pfosten der Brandschutzverglasung müssen

- ungestoßen über die gesamte Höhe der Brandschutzverglasung durchgehen oder
- wahlweise nur auf der Bandseite ungestoßen über die gesamte Höhe der Brandschutzverglasung durchgehen. Auf der Schlossseite darf der Pfosten der Brandschutzverglasung an horizontale Riegelprofile angrenzen, die jeweils maximal 300 mm über die Breite des Fensters hinausragen und dann an über die gesamte Höhe der Brandschutzverglasung ungestoßen durchgehende Pfosten angeschlossen werden (s. Anlage 2).

Die Befestigung der Zargenprofile der Fenster an den Rahmenprofilen der Brandschutzverglasung muss durch Stahlschrauben (Abstände \leq 150 mm vom Rand und \leq 1000 mm untereinander), Verbindungsfedern und Leim, jeweils nach Abschnitt 2.1.1.5.2, erfolgen.

b) Einbau-, Montage- und Betriebsanleitung

Für Einbau, Montage und Betrieb von Fenstern mit Feuer- und Rauschschutzeigenschaften ist eine vom Hersteller oder seinem Vertreter angefertigte, detaillierte Einbau-, Montage- und Betriebsanleitung zur Verfügung zu stellen. Der Hersteller oder sein Vertreter hat darin ausführlich die für Einbau, Inbetriebnahme und Inspektion der Fenster mit Feuer- und Rauschschutzeigenschaften notwendigen Angaben darzustellen.

Im Einzelnen muss diese Einbau-, Montage- und Betriebsanleitung - in Übereinstimmung mit dem jeweiligen Klassifizierungsbericht und den entsprechenden EXAP-Regeln nach DIN EN 15269-144 - mindestens folgende Angaben enthalten:

- Art, Ausführung und Mindestdicke der Brandschutzverglasung in die das Fenster eingebaut werden darf
- Hinweis auf die zu verwendenden Brandschutzscheiben (In der Brandschutzverglasung und dem Fenster sind Scheiben der gleichen Produktfamilie (gleicher Hersteller) zu verwenden.)
- Hinweise auf Zargenformen, -dicken und -materialien
- Anleitung zum Zusammenbau von ggf. aus Transportgründen zerlegten Zargen
- Anleitung zum Einbau von ggf. aus Transportgründen getrennt angelieferten Brandschutzscheiben
- Hinweise auf zulässige Verbindungsmittel
- Anleitung zum Einziehen von Dichtungs- oder D\u00e4mpfungsprofilen sowie d\u00e4mmschichtbildenden Baustoffen
- Hinweise auf zulässige Zubehörteile (z. B. Konstruktionsbänder, Schlösser, Schließmittel, Drückergarnituren)
- Hinweise auf die Türschließer-Einstellung
- Hinweise auf das funktionsgerechte Zusammenspiel aller Teile (z. B. Angaben zu Spaltmaßen)

44 DIN EN 15269-1:2019-10

Erweiterter Anwendungsbereich von Prüfergebnissen zur Feuerwiderstandsfähigkeit und/oder Rauchdichtigkeit von Türen, Toren und Fenstern einschließlich ihrer Baubeschläge – Teil 1: Allgemeine Anforderungen

Seite 19 von 23 | 7. September 2020

- Hinweise auf die Reihenfolge der Arbeitsgänge

2.3.2.3.5 Oberflächenbekleidungen

Die Rahmenprofile nach Abschnitt 2.1.1.1.1, die Glashalteleisten aus Holz nach Abschnitt 2.1.1.2.4, die Ausfüllungen nach Abschnitt 2.1.1.5.1 und die vertikalen Fugen zwischen nebeneinander anzuordnenden Scheiben (sog. Stoßfugenverglasung) dürfen an den Sichtseiten mit Bekleidungen nach Abschnitt 2.1.1.5.4 ausgeführt werden (s. Anlagen 5, 11 und 20).

2.3.2.4 Korrosionsschutz

Es gelten die Festlegungen in den Technischen Baubestimmungen sinngemäß (z. B. DIN EN 1090-2⁴⁵, DIN EN 1090-3⁴⁶, DIN EN 1993-1-3⁴⁷ in Verbindung mit DIN EN 1993-1-3/NA⁴⁸). Sofern darin nichts anderes festgelegt ist, sind nach der Errichtung nicht mehr zugängliche metallische Teile der Konstruktion mit einem dauerhaften Korrosionsschutz mit einem geeigneten Beschichtungssystem, mindestens jedoch Korrosionskategorie C2 nach DIN EN ISO 9223⁴⁹ mit einer langen Schutzdauer (> 15 Jahre) nach DIN EN ISO 12944-1⁵⁰, zu versehen; nach der Errichtung zugängliche metallische Teile sind zunächst mit einem ab Liefertermin für mindestens noch drei Monate wirksamen Grundschutz zu versehen.

2.3.3 Anschlüsse

2,3,3,1 Angrenzende Bauteile

- 2.3.3.1.1 Der Regelungsgegenstand ist in Verbindung mit folgenden angrenzenden Bauteilen brandschutztechnisch nachgewiesen:
 - mindestens 11,5 cm dicke W\u00e4nde aus Mauerwerk nach DIN EN 1996-1-151 in Verbindung mit DIN EN 1996-1-1/NA52 und DIN EN 1996-253 in Verbindung mit DIN EN 1996-2/NA54 aus
 - Mauerziegeln nach DIN EN 771-1⁵⁵ in Verbindung mit DIN 20000-401⁵⁶ oder DIN 105-100⁵⁷ mit Druckfestigkeiten mindestens der Druckfestigkeitsklasse 12 oder

45	DIN EN 1090-2:2011-10	Ausführung von Stahltragwerken und Aluminiumtragwerken - Teil 2: Technische Regeln für die Ausführung von Stahltragwerken
46	DIN EN 1090-3:2008-09	Ausführung von Stahltragwerken und Aluminiumtragwerken - Teil 3: Technische Regeln für die Ausführung von Aluminiumtragwerken
47	DIN EN 1993-1-3:2010-12	Eurocode 3: Bernessung und Konstruktion von Stahlbauten - Teil 1-3: Allgemeine Regeln - Ergänzende Regeln für kaltgeformte Bauteile und Bleche
48	DIN EN 1993-1-3/NA:2010-12	Nationaler Anhang - National festgelegte Parameter - Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-3: Allgemeine Regeln - Ergänzende Regeln für kaltgeformte Bauteile und Bleche
49	DIN EN ISO 9223:2012-05	Korrosion von Metallen und Legierungen - Korrosivität von Atmosphären - Klassifizierung, Bestimmung und Abschätzung
50	DIN EN ISO 12944-1:1998-07	Beschichtungsstoffe - Korrosionsschutz von Stahlbauten durch Beschichtungs- systeme - Teil 1: Allgemeine Einleitung
51	DIN EN 1996-1-1:2010-12	Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk
52	DIN EN 1996-1-1/NA:2012-05,	-NA/A1:2014/03 Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk
53	DIN EN 1996-2:2010-12	Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 2: Planung, Auswahl der Baustoffe und Ausführung von Mauerwerk
54	DIN EN 1996-2/NA:2012-01	Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 2: Planung, Auswahl der Baustoffe und Ausführung von Mauerwerk
55	DIN FN 771-1:2015-11	Festlegungen für Mauersteine - Teil 1: Mauerziegel
56	DIN 20000-401:2017-01	Anwendung von Bauprodukten in Bauwerken – Teil 401: Regeln für die Verwendung von Mauerziegeln nach DIN EN 771-1:2015-11
57	DIN 105-100:2012-01	Mauerziegel - Teil 100: Mauerziegel mit besonderen Eigenschaften

Seite 20 von 23 | 7. September 2020

- Kalksandsteinen nach DIN EN 771-2⁵⁸ in Verbindung mit DIN 20000-402⁵⁹ mit Druckfestigkeiten mindestens der Druckfestigkeitsklasse 12 und
- Normalmauermörtel nach DIN EN 998-2⁶⁰ in Verbindung mit DIN 20000-412⁶¹ oder DIN 18580⁶², jeweils mindestens der Mörtelklasse M 5 oder
- mindestens 17,5 cm dicke Wände aus Mauerwerk nach DIN EN 1996-1-1⁵¹ in Verbindung mit DIN EN 1996-1-1/NA⁵² und DIN EN 1996-2⁵³ in Verbindung mit DIN EN 1996-2/NA⁵⁴
 - Porenbetonsteinen nach DIN EN 771-4⁶³ in Verbindung mit DIN 20000-404⁶⁴ mindestens der Steinfestigkeitsklasse 4 und
 - Dünnbettmörtel nach DIN EN 998-260 in Verbindung mit DIN 20000-41261 oder
- mindestens 10 cm dicke Wände bzw. Decken aus Beton bzw. Stahlbeton nach DIN EN 1992-1-165 in Verbindung mit DIN EN 1992-1-1/NA66 (die indikativen Mindestfestigkeitsklassen nach DIN EN 1992-1-165 in Verbindung mit DIN EN 1992-1-1/NA66, NDP Zu E.1 (2), sind zu beachten.) oder
- mindestens 10 cm Dicke und ≤ 4000 mm hohe klassifizierte Wände aus Gipsplatten mindestens der Feuerwiderstandsklasse F 60 nach DIN 4102-467, Abschnitt 10.2, Tabelle 10.2, mit Ständern und Riegeln aus Stahlblech und zweilagiger Beplankung aus nichtbrennbaren² Feuerschutzplatten (GKF) und nichtbrennbarer² Mineralwolle-Dämmschicht, jedoch nur bei seitlichem Anschluss und nur bei Anwendung der Brandschutzverglasung als Bauart zur Errichtung von nichttragenden Innenwänden bzw. zur Ausführung lichtdurchlässiger Teilflächen in Innenwänden.

Diese an die Brandschutzverglasung allseitig angrenzenden Bauteile müssen mindestens feuerhemmende² Bauteile sein.

- 2.3.3.1.2 Die Eignung des Regelungsgegenstandes zur Erfüllung der Anforderungen des Brandschutzes ist für den Anschluss an
 - unbekleidete Holzbauteile, jeweils ausgeführt wie solche mit einer Feuerwiderstandsdauer von 30 Minuten nach DIN 4102-4⁶⁷, Abschnitt 8.1, Profilabmessungen ≥ 80 mm x ≥ 100 mm (Breite x Höhe),
 - bekleidete Stahlträger oder -stützen, jeweils ausgeführt wie solche mindestens der Feuerwiderstandsklasse F 60-A nach DIN 4102-4⁸⁷, Abschnitt 7.2 bzw. 7.3, mit einer zweilagigen Bekleidung aus nichtbrennbaren² Feuerschutzplatten (GKF) nach den Tabellen 7.3 bzw. 7.6

nachgewiesen.

Bei der Anwendung sind die bauordnungsrechtlichen Vorschriften zu beachten.

58	DIN EN 771-2:2015-11	Festlegungen für Mauersteine - Teil 2: Kalksandsteine
59	DIN 20000-402:2017-01	Anwendung von Bauprodukten in Bauwerken – Teil 402: Regeln für die Verwendung von Kalksandsteinen nach DIN EN 771-2:2015-11
60	DIN EN 998-2:2017-02	Festlegungen für Mörtel im Mauerwerksbau; Teil 2: Mauermörtel
61	DIN 20000-412:2019-06	Anwendung von Bauprodukten in Bauwerken – Teil 412: Regeln für die Verwendung von Mauermörtel nach DIN EN 998-2:2017-02
62	DIN 18580:2019-06	Baustellenmörtel
63	DIN EN 771-4:2015-11	Festlegungen für Mauersteine – Teil 4: Porenbetonsteine
64	DIN 20000-404:2018-04	Anwendung von Bauprodukten in Bauwerken – Teil 404: Regeln für die Verwendung von Porenbetonsteinen nach DIN EN 771-4:2015-11
65	DIN EN 1992-1-1:2011-01	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontrag- werken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
66	DIN EN 1992-1-1/NA:2013-04	Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine
67	DIN 4102-4:2016-05	Bemessungsregeln und Regeln für den Hochbau Brandverhalten von Baustoffen und Bauteilen - Teil 4: Zusammenstellung und Anwendung klassifizierter Baustoffe, Bauteile und Sonderbauteile

Seite 21 von 23 | 7. September 2020

2.3.3.2 Anschluss an Massivbauteile

Die Rahmenprofile der Brandschutzverglasung sind an den angrenzenden Massivbauteilen unter Verwendung von Befestigungsmitteln nach Abschnitt 2.1.1.3.1, in Abständen \leq 200 mm vom Rand und \leq 1000 mm (\leq 500 mm bei Verwendung von Stahllaschen entsprechend Anlage 14) untereinander, umlaufend zu befestigen (s. Anlagen 11 bis 14).

Die Ausführung mit gleitendem Deckenanschluss muss entsprechend Anlage 13 erfolgen. Hierfür sind Bauprodukte nach Abschnitt 2.1.1.5.3 zu verwenden. Das horizontal verlaufende Randprofil ist an dem angrenzenden Massivbauteil wie zuvor beschrieben zu befestigen. Die Flachstahl- und Holzprofile müssen über die gesamte Länge der Brandschutzverglasung durchgehen und mittels Stahlschrauben in Abständen ≤ 150 mm miteinander verbunden werden. Der verbleibende Hohlraum zwischen dem vorgenannten Randprofil und dem oberen Riegelprofil ist mit Mineralwolle auszufüllen.

2.3.3.3 Anschluss an eine klassifizierte Wand aus Gipsplatten

Der seitliche Anschluss an eine klassifizierte Wand aus Gipsplatten nach Abschnitt 2.3.3.1.1 ist entsprechend Anlage 15 auszuführen. Die Pfostenprofile der Brandschutzverglasung sind an den Ständerprofilen der Wand aus Gipsplatten unter Verwendung von Befestigungsmitteln nach Abschnitt 2.1.1.3.2, in Abständen \leq 200 mm vom Rand und \leq 1000 mm untereinander, zu befestigen.

Die an die Brandschutzverglasung seitlich angrenzende Wand aus Gipsplatten muss beidseitig und in der Laibung mit jeweils mindestens zwei ≥ 12,5 mm dicken, nichtbrennbaren² Gipsplatten, Typ DF nach DIN EN 520²0, ²¹, beplankt sein.

2.3.3.4 Anschlüsse an bekleidete Stahlbauteile und an unbekleidete Holzbauteile

Die Anschlüsse an bekleidete Stahlbauteile und an unbekleidete Holzbauteile nach den Abschnitten 1.2.4 und 2.3.3.1.2 sind entsprechend den Anlagen 16 und 17 auszuführen. Die Rahmenprofile der Brandschutzverglasung sind an den vorgenannten Bauteilen unter Verwendung von Befestigungsmitteln nach Abschnitt 2.1.1.3.2, in Abständen ≤ 200 mm vom Rand und

- ≤ 500 mm (an den bekleideten Stahlbauteilen) bzw.
- ≤ 1000 mm (an den unbekleideten Holzbauteilen)

untereinander, umlaufend zu befestigen.

2.3.3.5 Fugenausbildung

Alle Fugen zwischen dem Rahmen der Brandschutzverglasung und den angrenzenden Bauteilen müssen mit Fugenmaterialien nach Abschnitt 2.1.1.4.2 umlaufend und vollständig ausgefüllt und verschlossen werden (s. Anlagen 11 bis 17). Die Fugen dürfen abschließend mit dem Silikon-Dichtstoff versiegelt bzw. mit Deckleisten abgedeckt werden.

Sofern in den vorgenannten Fugen (Fugenbreite ≤ 20 mm) der Fugendichtschaum nach Abschnitt 2.1.1.4.2 verwendet wird, sind die Fugen abschließend beidseitig mit vorgenanntem Silikon-Dichtstoff zu versiegeln.

2.3.4 Übereinstimmungserklärung für den Einbau der Fenster mit Feuer- und Rauchschutzeigenschaften

Die bauausführende Firma, die die Fenster mit Feuer- und Rauchschutzeigenschaften eingebaut hat, muss für jedes Bauvorhaben eine Bestätigung der Übereinstimmung der Bauart mit der allgemeinen Bauartgenehmigung abgeben (s. §§ 16 a Abs. 5 i. V. m. 21 Abs. 2 MBO⁶⁸).

Sie muss schriftlich erfolgen und außerdem mindestens folgende Angaben enthalten:

- Einbau: Einflügelige Drehflügelfenster "TSH feuerhemmendes Brandschutzfenster mit Öffnungsflügel"
- Name und Anschrift der bauausführenden Firma

68 nach Landesbauordnung

Seite 22 von 23 | 7. September 2020

- Bezeichnung der baulichen Anlage
- Datum der Errichtung/Fertigstellung
- Ort und Datum der Ausstellung der Erklärung sowie Unterschrift des Verantwortlichen
 Die Übereinstimmungserklärung ist dem Bauherrn zur ggf. erforderlichen Weiterleitung an die zuständige Bauaufsichtsbehörde auszuhändigen.

2.3.5 Kennzeichnung der Brandschutzverglasung

Jede Brandschutzverglasung nach dieser allgemeinen Bauartgenehmigung ist von der bauausführenden Firma, die sie errichtet hat, mit einem Stahlblechschild zu kennzeichnen, das folgende Angaben - dauerhaft lesbar - enthalten muss:

- Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30
- Name (oder ggf. Kennziffer) der bauausführenden Firma, die die Brandschutzverglasung errichtet hat (s. Abschnitt 2.3.6)
- ggf. Name des Antragstellers, falls abweichend von der bauausführenden Firma
- Bauartgenehmigungsnummer: Z-19.14-1833
- Errichtungsjahr:

Das Schild ist auf dem Rahmen der Brandschutzverglasung dauerhaft zu befestigen (Lage s. Anlagen 1 und 2).

2.3.6 Übereinstimmungserklärung für die Brandschutzverglasung

Die bauausführende Firma, die die Brandschutzverglasung errichtet hat, muss für jedes Bauvorhaben eine Bestätigung der Übereinstimmung der Bauart mit der allgemeinen Bauartgenehmigung abgeben (s. §§ 16 a Abs. 5 i. V. m. 21 Abs. 2 MBO⁶⁸).

Sie muss schriftlich erfolgen und außerdem mindestens folgende Angaben enthalten:

- Z-19.14-1833
- Bauart zum Errichten der Brandschutzverglasung "FIRE-HO"
- Name und Anschrift der bauausführenden Firma
- Bezeichnung der baulichen Anlage
- Datum der Errichtung/Fertigstellung
- Ort und Datum der Ausstellung der Erklärung sowie Unterschrift des Verantwortlichen

Die Übereinstimmungserklärung ist dem Bauherrn zur ggf. erforderlichen Weiterleitung an die zuständige Bauaufsichtsbehörde auszuhändigen.

3 Bestimmungen für Nutzung, Unterhalt, Wartung

Im Falle des Austausches beschädigter oder zerstörter Scheiben ist darauf zu achten, dass Scheiben verwendet werden, die den Bestimmungen dieser allgemeinen Bauartgenehmigung entsprechen. Der Einbau muss wieder in der bestimmungsgemäßen Weise erfolgen.

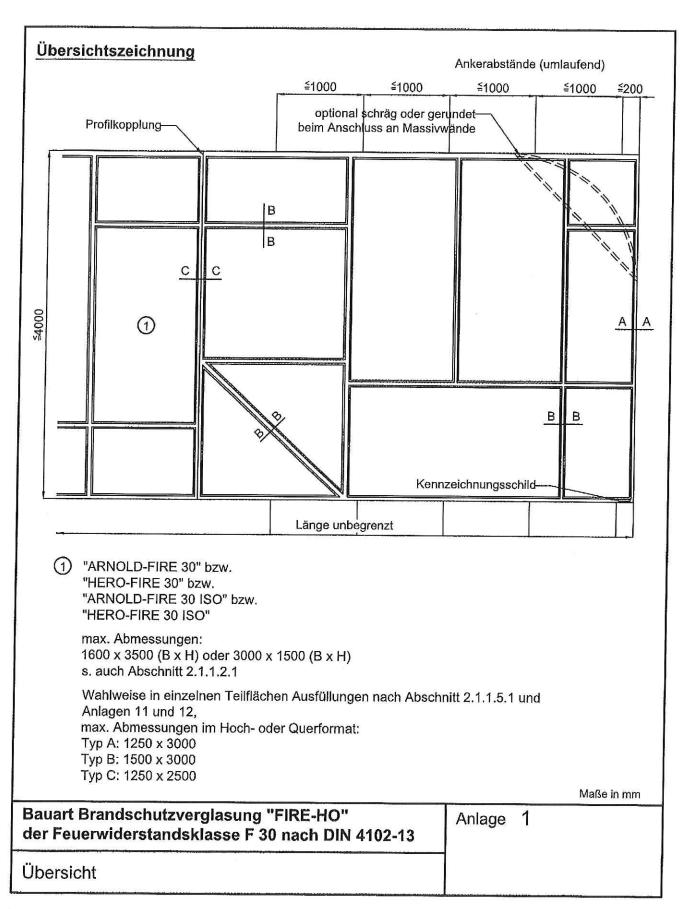
Die Bestimmungen der Abschnitte 2.3.1.1 und 2.3.6 sind sinngemäß anzuwenden.

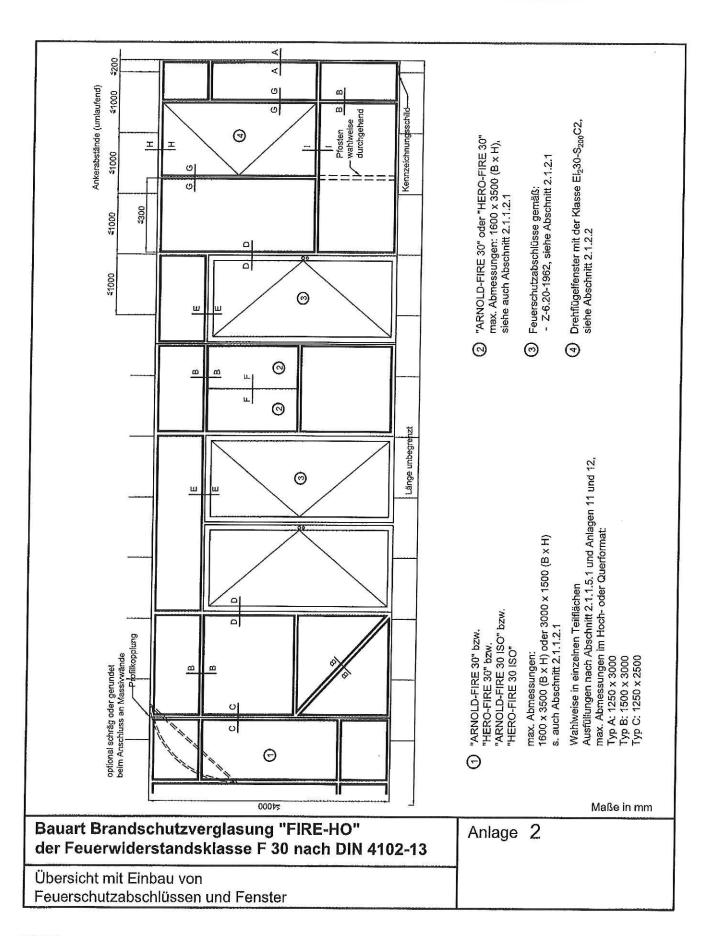
Wartungsanleitung für Fenster mit Feuer- und Rauchschutzeigenschaften

Zu jedem Fenster mit Feuer- und Rauchschutzeigenschaften ist vom Hersteller eine schriftliche Wartungsanleitung mitzuliefern. Aus der Wartungsanleitung muss ersichtlich sein, welche Arbeiten (auch die Reihenfolge der Arbeiten) in welchen Intervallen (jedoch mindestens jährlich) auszuführen sind, damit sichergestellt ist, dass das eingebaute Fenster mit Feuer- und Rauchschutzeigenschaften auch nach längerer Nutzung seine Leistungseigenschaften beibehält. In der Wartungsanleitung sind mindestens die folgenden Angaben aufzuführen:

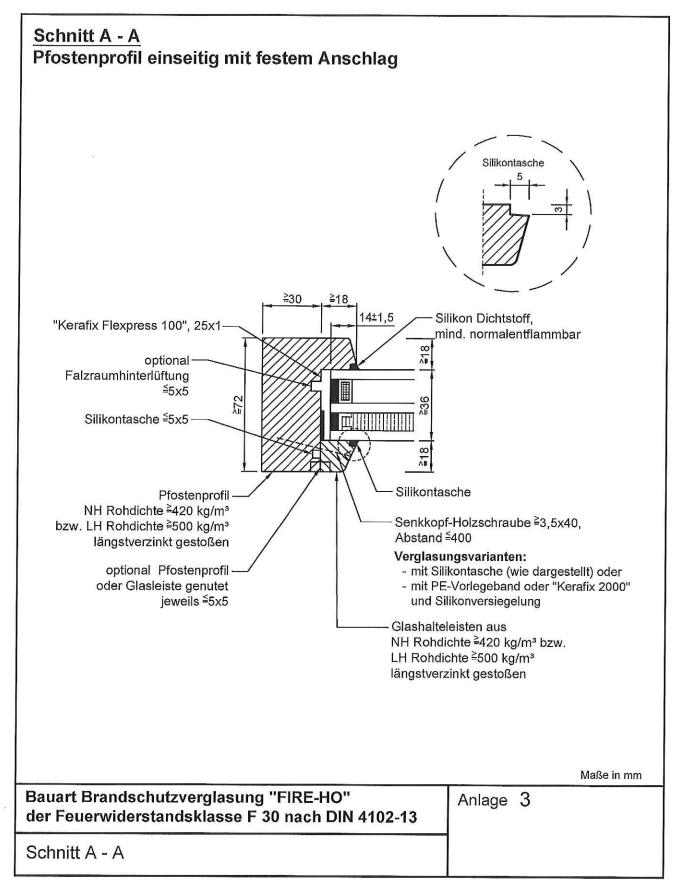
Inspektion und Betätigung des zu öffnenden Fensters, um sicherzustellen, dass die Funktion aller Bauteile gegeben ist.

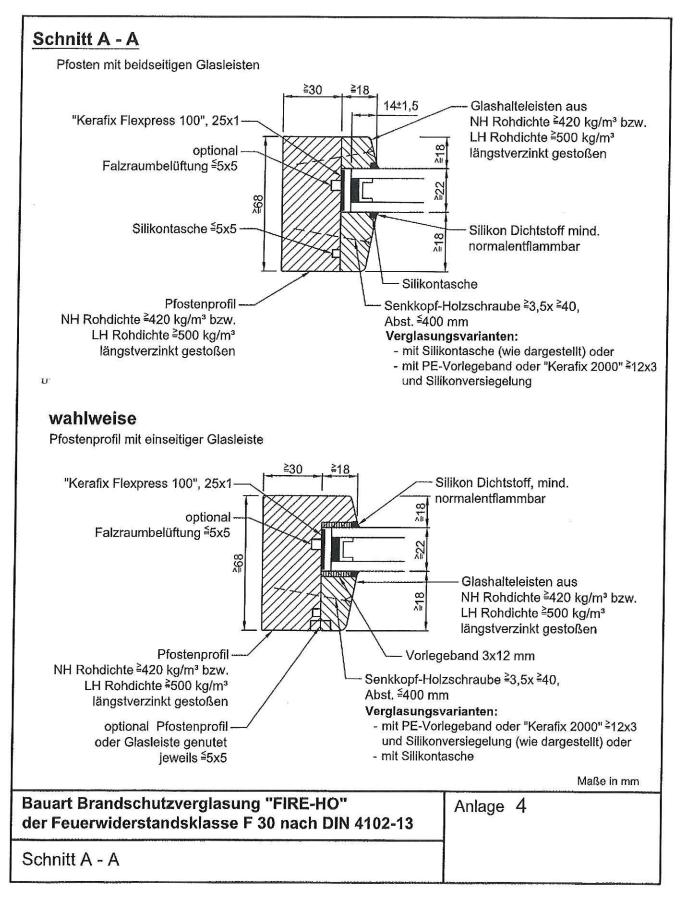
Seite 23 von 23 | 7. September 2020

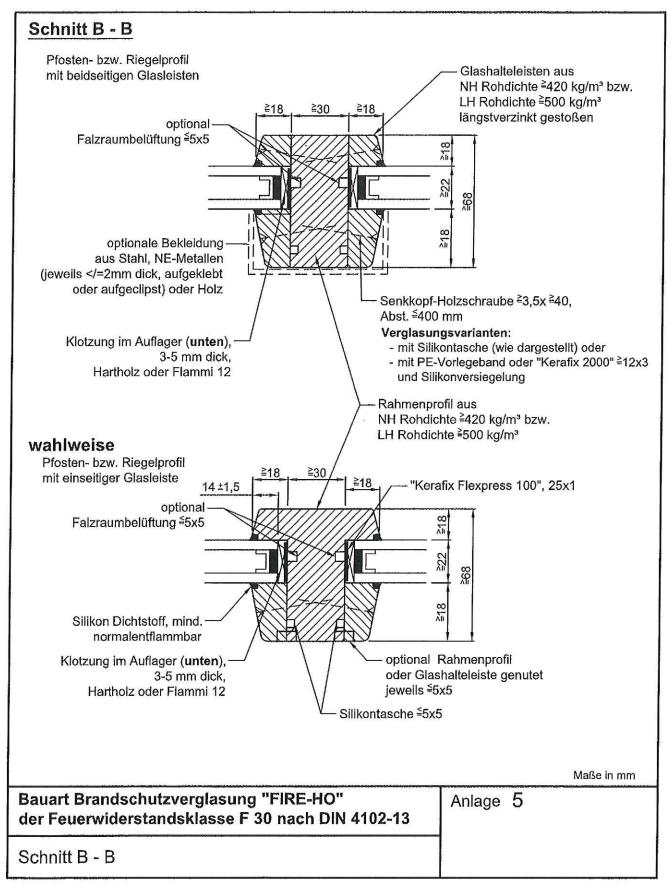

- Sicherstellen, dass die Schließbleche für die Schlösser/Fallen frei von Hindernissen sind.
- Prüfung daraufhin, dass die Schließzeit Fensters so gesteuert ist, dass sie innerhalb der in den Anweisungen des Herstellers angegebenen Grenzwerten liegt.
- die Selbstschließung muss von einem Öffnungswinkel von mindestens 10° an ablaufen, wobei jegliche vorhandenen Fallen einrasten und/oder Dichtungen angelegt werden
- Prüfung daraufhin, dass alle Bauteile sicher angebracht sind und dass sämtliche Abdichtungen weiterhin unbeschädigt sind.

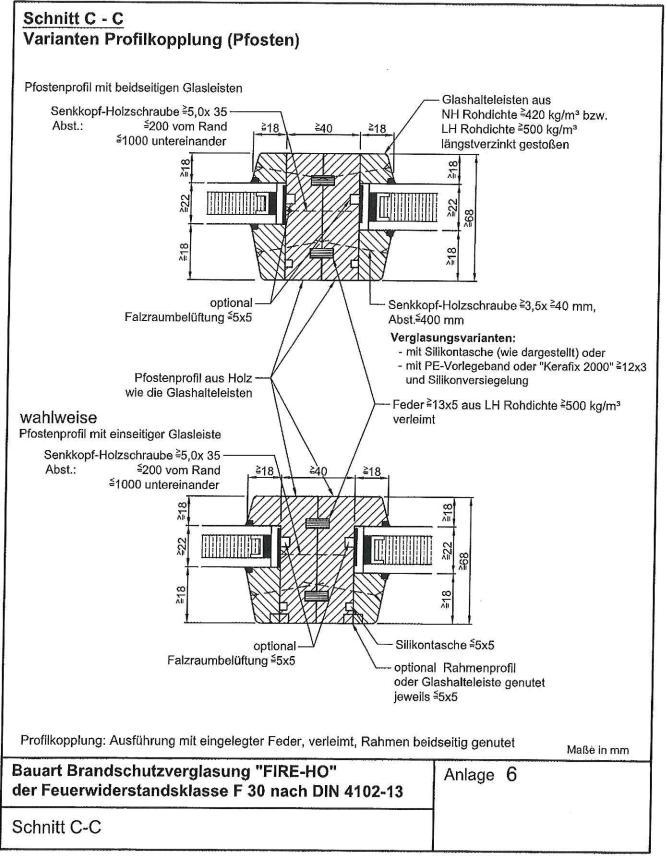

Die Wartung des Fensters mit Feuer- und Rauchschutzeigenschaften ist nach Vorgaben des Herstellers durchzuführen und schriftlich zu dokumentieren.

Heidrun Bombach Referatsleiterin Beglaubigt


Deutsches Institut



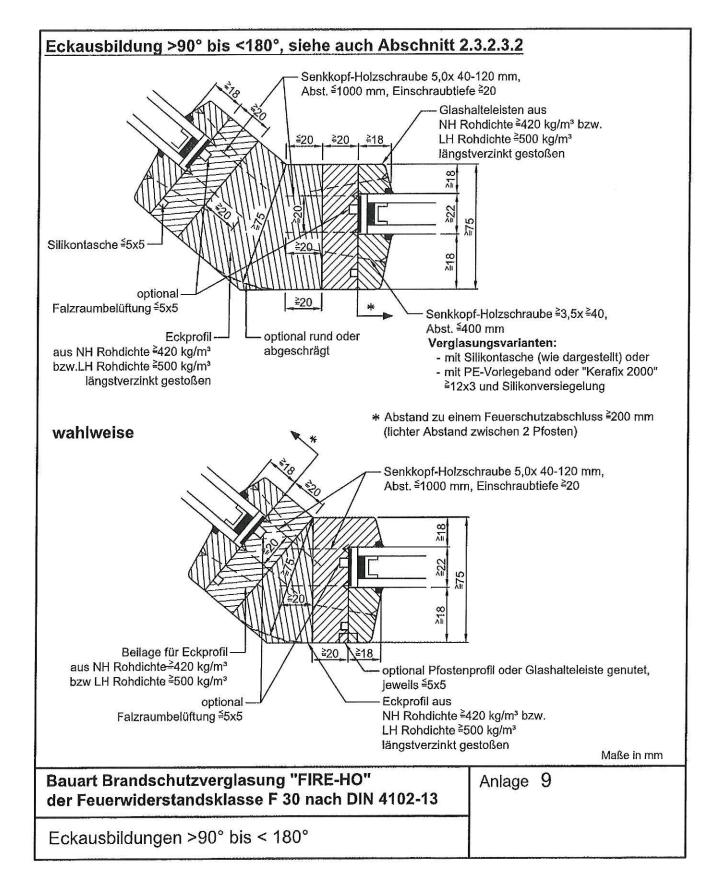




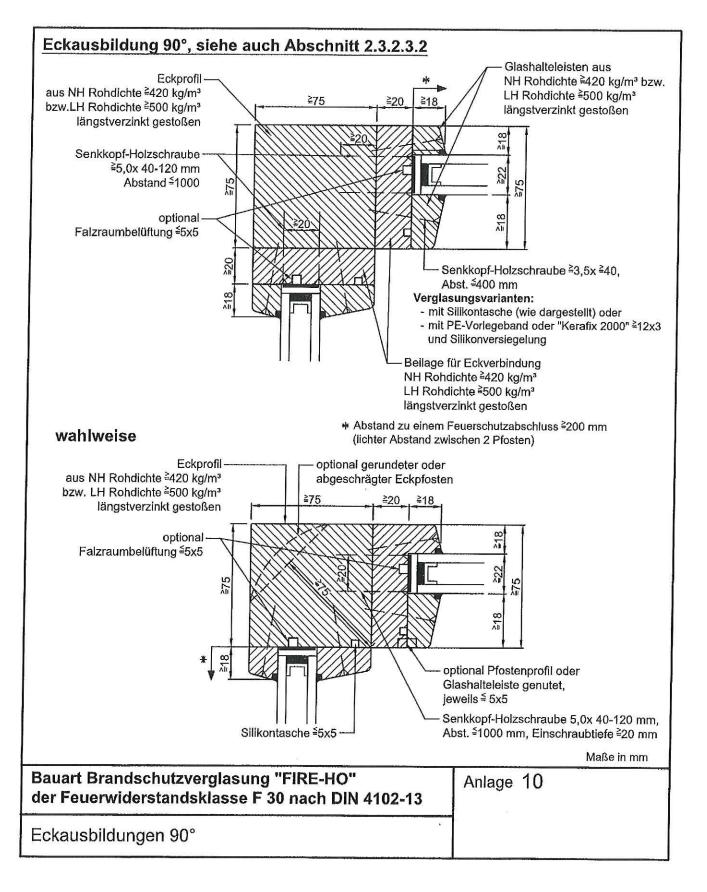


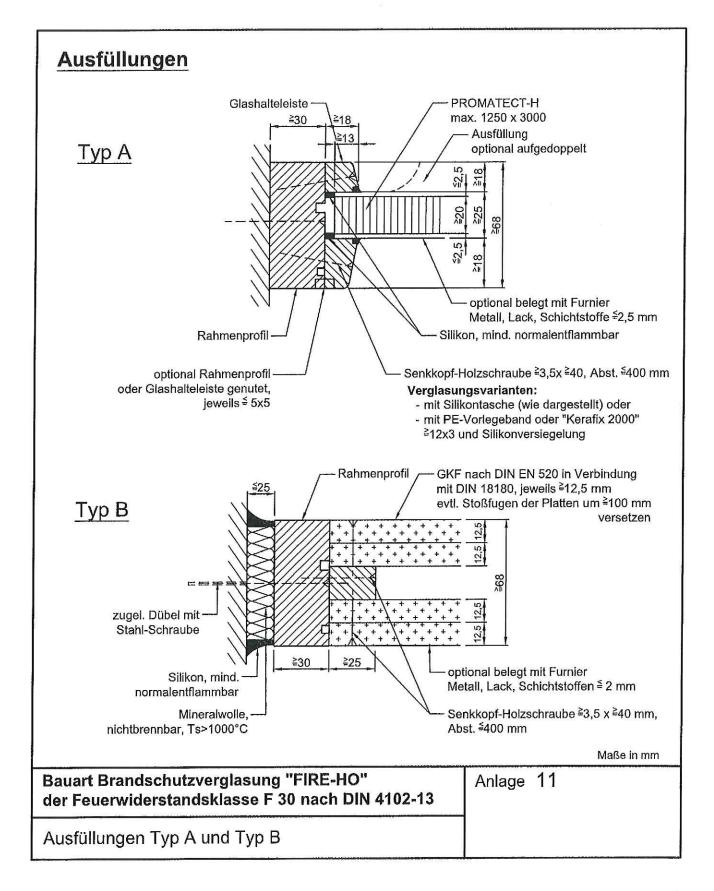


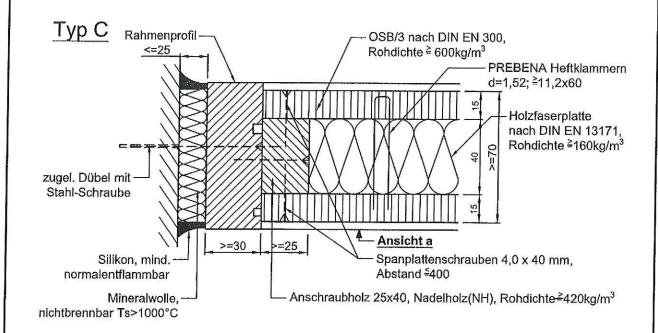
Schnitt F - F

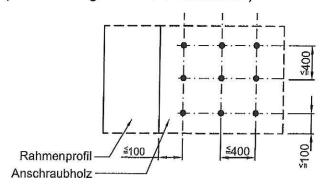

Glasstoß - Stoßfugenverglasung

- 1) Pfostenprofil
- 2) Glashalteleiste
- 3) Silikon Dichtstoff, mind. normalentflammbar
- 4) Senkkopf-Holzschrauben ≧3,5x ≧40, Abstand ≨400 mm Verglasungsvarianten:
 - mit Silikontasche oder
 - mit PE-Vorlegeband oder "Kerafix 2000" ≧12x3 und Silikonversiegelung
- 5) "Kerafix Flexpress 100", 25x1


- 6) optional Falzraumbelüftung ≦5x5
- "Kerafix 2000" mit Selbstklebeschicht, 3x15mm, 2 Streifen, jeweils 1x an die Scheibenkante geklebt
- 8) normalentflammbarer Silikon Dichtstoff
- 9) optional aufgeklebte Sprosse aus Metall (Dicke ≦1,5) oder Holz (Dicke ≦10 mm)
- 10) "ARNOLD-FIRE 30" oder "HERO-FIRE 30", nach Anlage 2



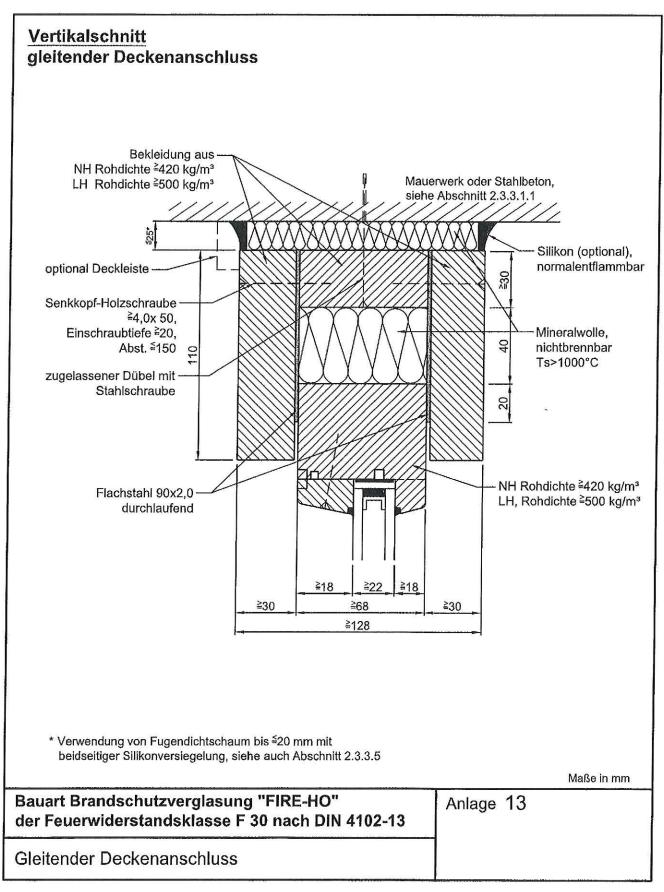


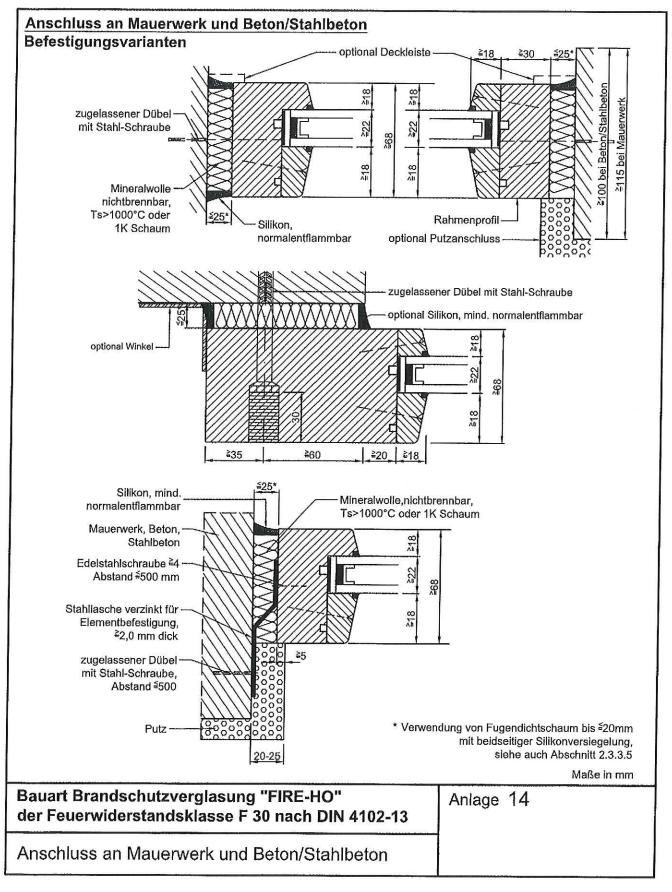


Ausfüllungen (Variante)

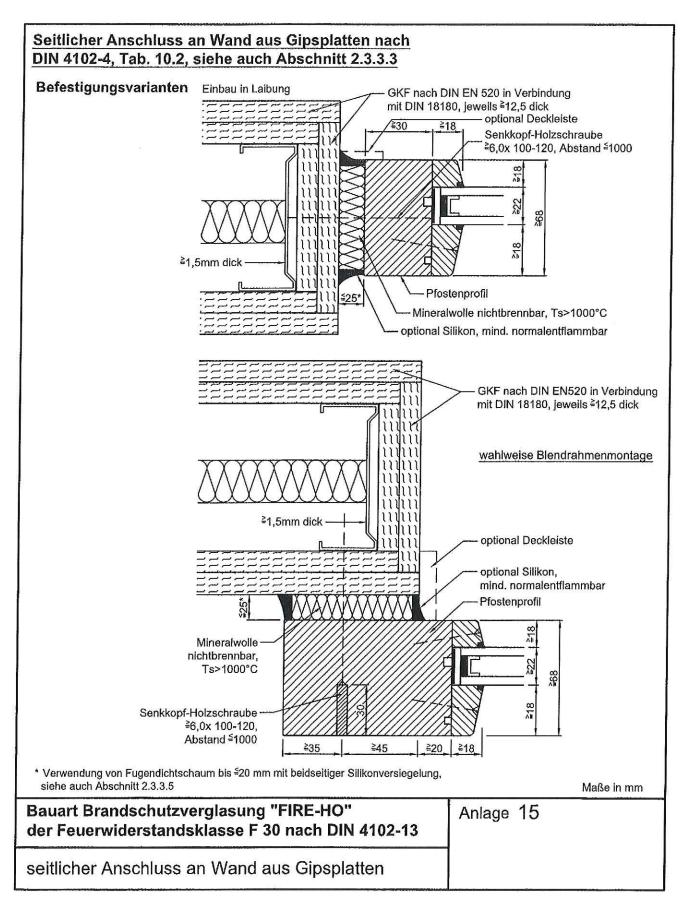
Ansicht a

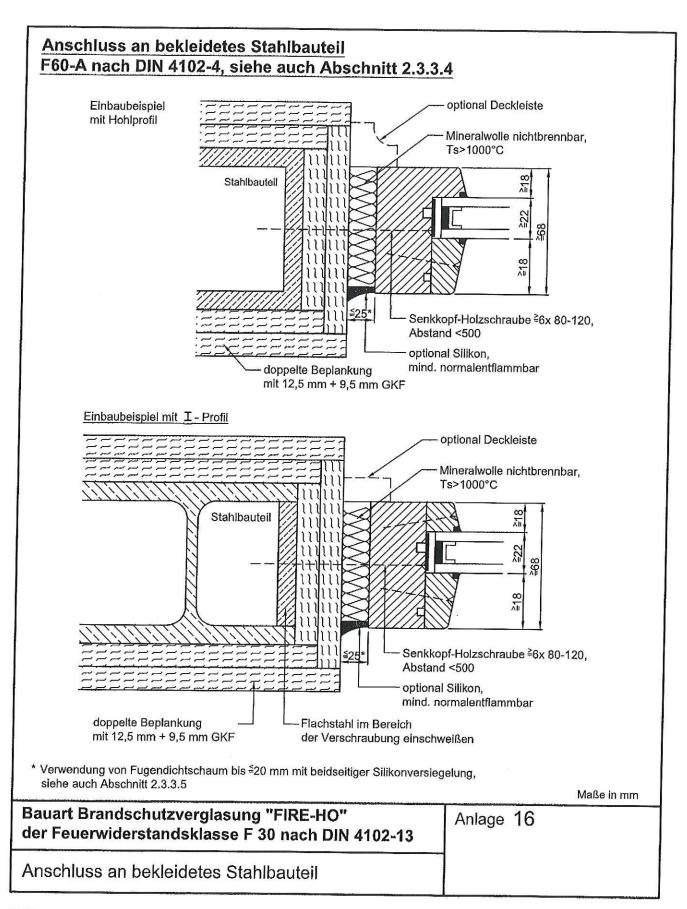
(Anordnung der Heftklammern)

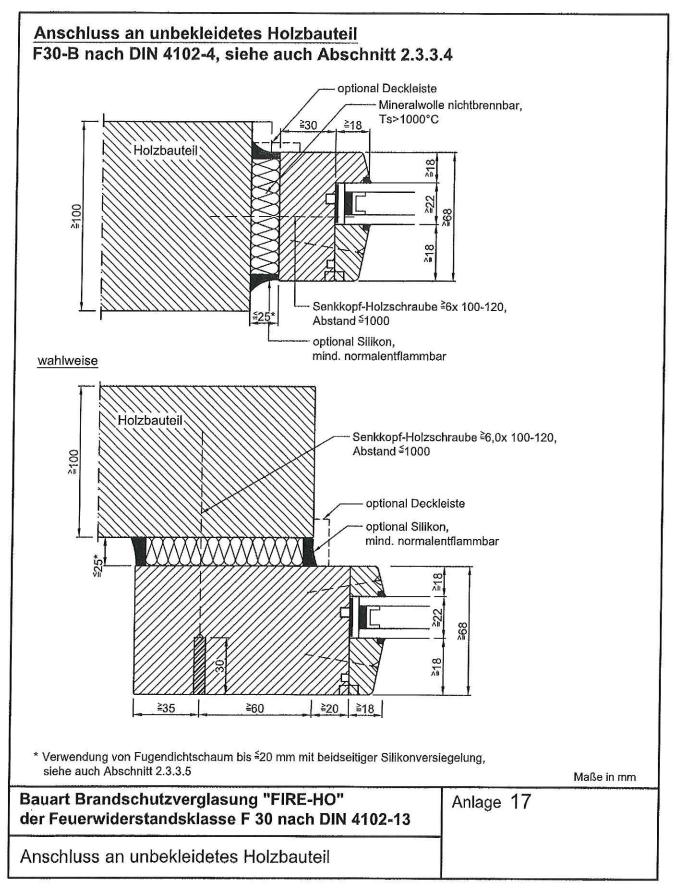

Maße in mm

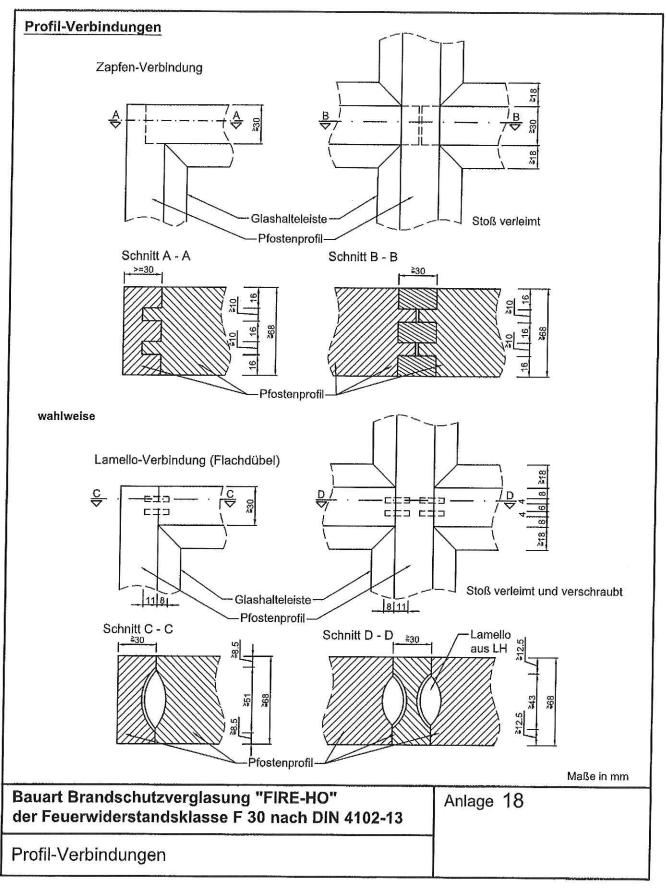

Bauart Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30 nach DIN 4102-13

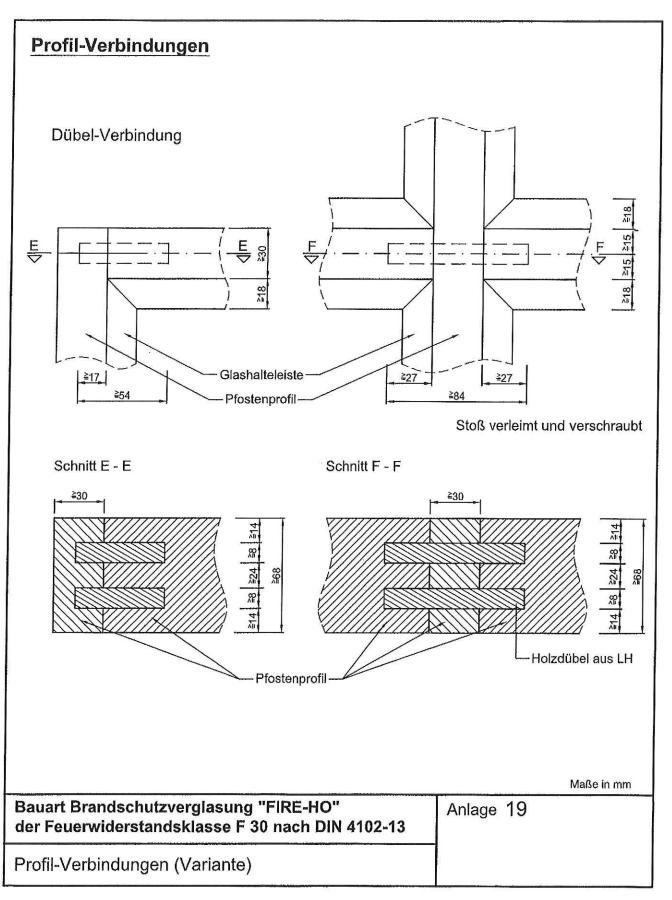
Anlage 12

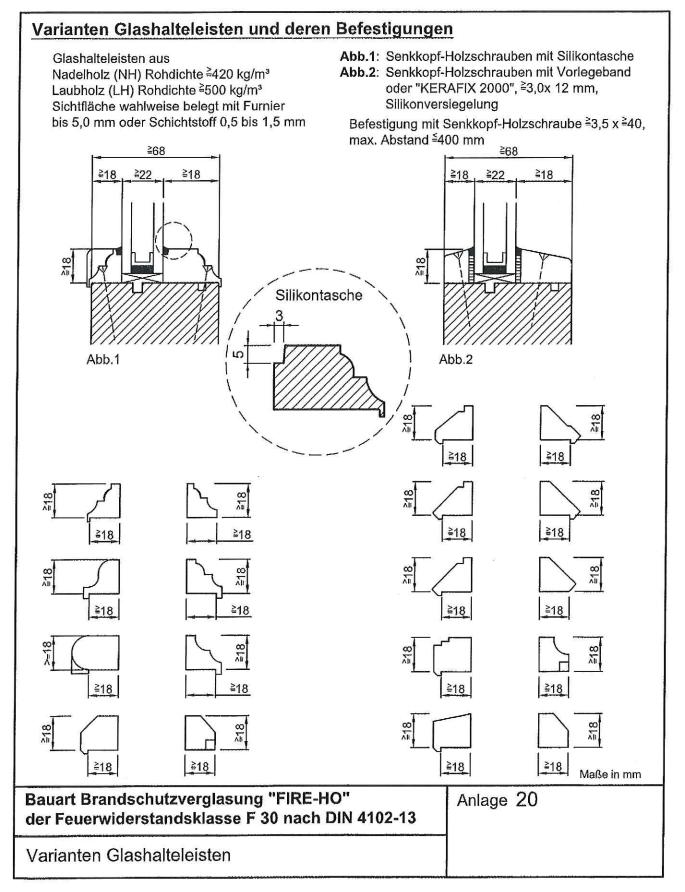

Ausfüllungen Typ C

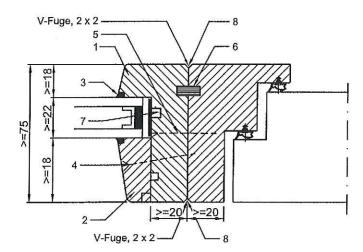


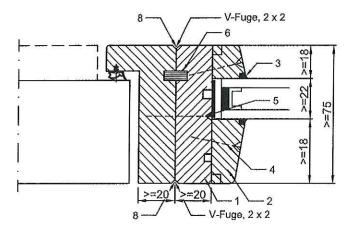









Schnitt D - D


Anschluss Feuerschutzabschlüsse gemäß Z-6.20-1962

- 1) Pfostenprofil
- 2) Glashalteleiste
- 3) Silikon Dichtstoff, normalentflammbar
- Senkkopf-Holzschraube ≥3,5x ≥40 mm, Abstand ≤400 mm

Verglasungsvarianten:

- mit Silikontasche (wie dargestellt) oder
- mit PE-Vorlegeband oder "Kerafix 2000" ≧12x3 und Silikonversiegelung
- 5) Senkkopf-Holzschraube ₹5,0x ₹35 mm Einschraubtief ₹15 mm, Abstand ₹1000 mm
- 6) Feder aus NH oder LH ≥13x5 mit der Rohdichte ≥450 kg/m³, verleimt mit PVAC D4-Leim nach EN 204 oder PU C4 nach EN 12765
- 7) optional Falzraumbelüftung ≦5x5
- Bel Feuerschutzabschlüssen mit zusätzl. Anforderung Rauchschutz (RS) sind die Anschlussfugen mit einem mind. normal entflammbaren Dichtstoff durchgehend abzudichten.

Gewichts- und Größentabelle siehe Anlage 22 (Schnitt E - E)

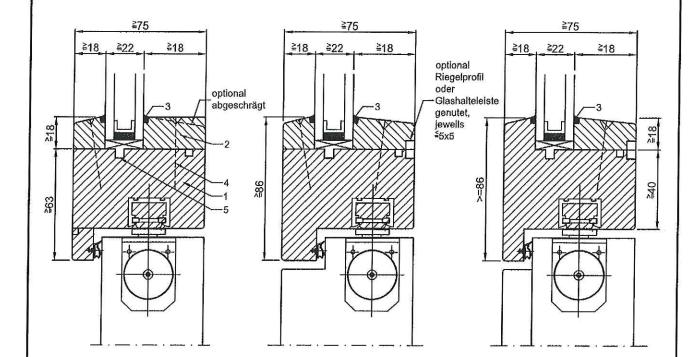
Maße in mm

Bauart Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30 nach DIN 4102-13

Schnitt D-D, Anschluss Feuerschutzabschlüsse gemäß Z-6.20-1962

Anlage 21

Schnitt E - E


Anschluss Feuerschutzabschlüsse gemäß Z-6.20-1962

- 1) Riegelprofil
- 2) Glashalteleiste
- 3) Silikon Dichtstoff, normalentflammbar
- 5) optional Falzraumbelüftung ≦5x5

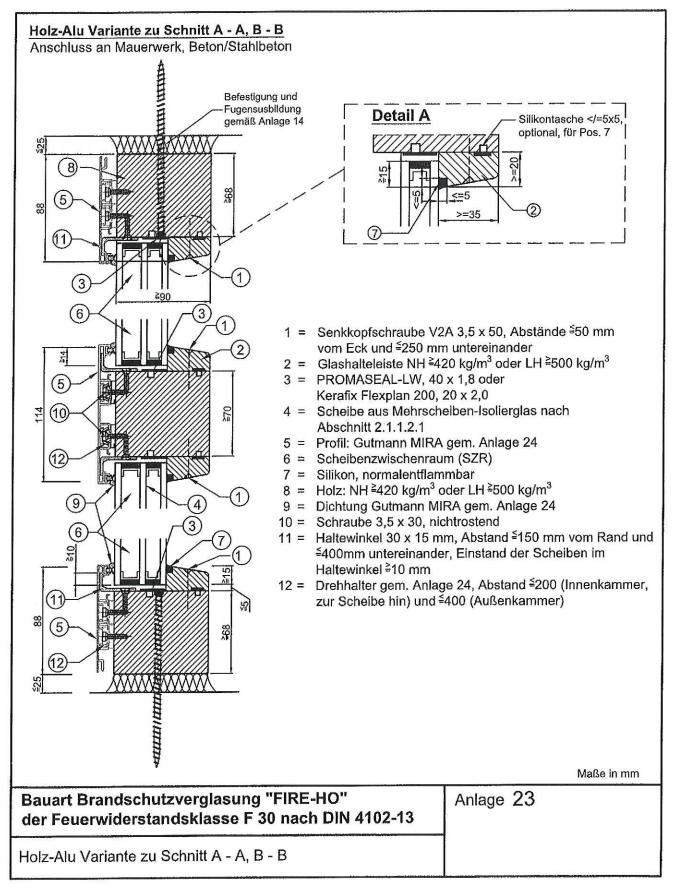
 Senkkopf-Holzschraube ≥3,5 x ≥40 mm, Abstand ≤400 mm

Verglasungsvarianten:

- mit Silikontasche (wie dargestellt) oder
- mit PE-Vorlegeband oder "Kerafix 2000" ≥12x3 und Silikonversiegelung

Тур	LD	max. Flügelgewicht in kg
HOBA Typ 1	1311 x 2468	102
HOBA Typ 2	2436 x 2468	102

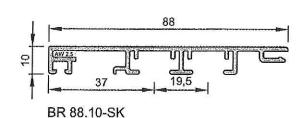
wahlweise stumpf oder gefälzt


Maße in mm

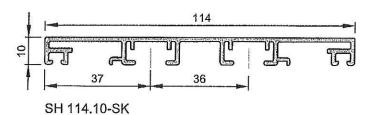
Bauart Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30 nach DIN 4102-13

Anlage 22

Schnitt E-E, Anschluss Feuerschutzabschlüsse gemäß Z-6.20-1962



Holz-Alu Variante zu Schnitt A - A, B - B


Profile, Dichtungen, Haltewinkel, Drehhalter

Gutmann MIRA

Gutmann MIRA

9 Dichtungen

Gutmann MIRA

HA 3060/5 N, EPDM Art.-Nr. 8030605 / E000620

(11) Haltewinkel

Haltewinkel 30 x 15 x 2, Länge 40, Abstand ≦400 mm

12 Drehhalter

Gutmann MIRA

Art.-Nr. 792 389

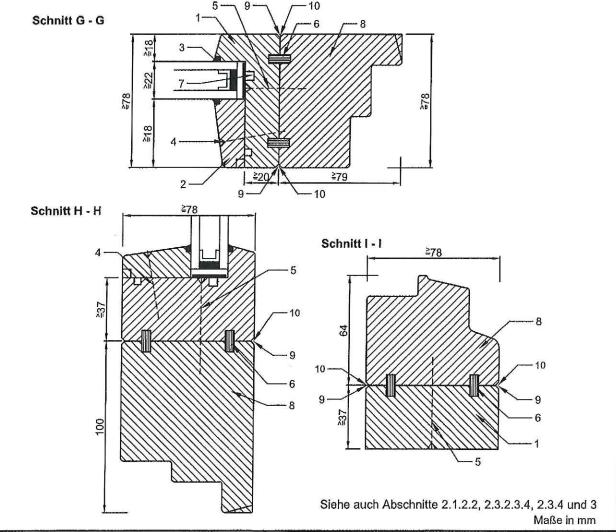
Maße in mm

Bauart Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30 nach DIN 4102-13

Anlage 24

Holz-Alu Variante zu Schnitt A - A, B - B, Profile, Dichtungen, Haltewinkel, Drehalter

Schnitte G - G, H - H und I - I


Anschluss Drehflügelfenster mit der Klasse El₂30 S₂₀₀ C2, Flügelprofile aus NH, Flügelgewicht ≦130 kg

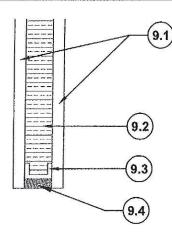
- 1) Pfosten- bzw. Riegelprofil
- 2) Glashalteleiste
- 3) Silikon Dichtstoff, normalentflammbar
- Senkkopf-Holzschrauben ≥3,5 x ≥40 mm, Abstand ≥400 mm

Verglasungsvarlanten:

- mit Silikontasche (wie dargestellt) oder
- mit PE-Vorlegeband oder "Kerafix 2000" ≥12x3 und Silikonversiegelung
- 5) Senkkopf-Holzschraubte ≧5,0, Einschraubtiefe ≧30 mm Abstand ≦1000 mm, Randabstand ≦150

- 6) Feder aus NH oder LH mit der Rohdichte ≧450 kg/m³ oder MDF, Rohdichte ≧600 kg/m³, ≧13x5
- 7) optional Falzraumbelüftung ≤5x5
- 8) Zargenprofil, NH
- 9) V-Fuge, 2 x 2
- Die Anschlussfugen sind mit einem mind. normalentflammbaren Dichtstoff durchgehend abzudichten.

Bauart Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30 nach DIN 4102-13


Anlage 25

Schnitte G - G, H - H, I - I,

Anschluss Drehflügelfenster mit der Klasse El₂30 S₂₀₀ C2

Verbundglasscheibe "ARNOLD-FIRE 30"

Scheibendicke ≥22 mm bis ≤43 mm

(9.1) ≥ 5,0 mm*

dickes thermisch vorgespanntes Kalknatron-Einscheibensicherheits-

Glas aus Floatglas

oder

≥ 5,0 mm* dickes thermisch vorgespanntes Kalknatron-Einscheibensicherheits-

Glas aus Ornamentglas

oder

≥ 6,0 mm dickes Verbund-Sicherheitsglas (VSG) mit PVB-Folie

mit Aufbau

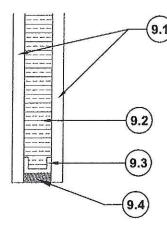
≥ 3,0 mm Floatglas, ≥ 0,38 mm PVB-Folie, ≥ 3,0 mm Floatglas

* ≥6,0 mm bei Abmessungen >1500 (B) x >3000(H) und bei Verwendung für sog. Stoßfugenverglasung

Jeweils ungefärbt oder in der Masse eingefärbt; mit oder ohne Oberflächenverdelung, Schichten, Emaille- oder Lackauftrag, Siebdruck, aufgeklebte Sprossen⁽¹⁾, Folienbeklebung, Lasergravur

- (9.2) farbneutrale Brandschutzschicht ≧12 mm dick
- (9.3) Abstandshalter
- 9.4 Dichtstoff aus Polysulfid oder Polyurethan oder Silikon
 - (1) ...nicht mit dem Rahmen verklebt

Maße in mm


Bauart Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30 nach DIN 4102-13

Anlage 26

Verbundglasscheibe "ARNOLD-FIRE 30"

Verbundglasscheibe "HERO-FIRE 30"

Scheibendicke ≥22 mm bis ≤43 mm

9.1) ≥ 5,0 mm*

dickes thermisch vorgespanntes Kalknatron-Einscheibensicherheits-

Glas aus Floatglas

oder

≧ 5,0 mm*

dickes thermisch vorgespanntes Kalknatron-Einscheibensicherheits-

Glas aus Ornamentglas

oder

≧ 6,0 mm

dickes Verbund-Sicherheitsglas (VSG) mit PVB-Folie

mit Aufbau

≧ 3,0 mm Floatglas, ≥ 0,38 mm PVB-Folie, ≥ 3,0 mm Floatglas

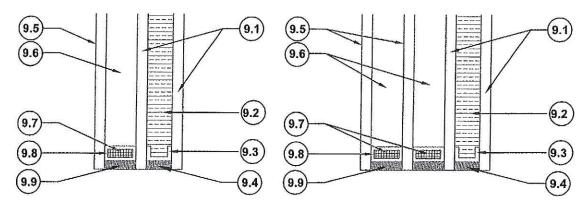
* ≧6,0 mm bei Abmessungen >1500 (B) x >3000(H) und bei Verwendung für sog. Stoßfugenverglasung

Jeweils ungefärbt oder in der Masse eingefärbt; mit oder ohne Oberflächenverdelung, Schichten, Emaille- oder Lackauftrag, Siebdruck, aufgeklebte Sprossen⁽¹⁾, Folienbeklebung, Lasergravur

- (9.2) farbneutrale Brandschutzschicht ≧12 mm dick
- 9.3 Abstandshalter
- 9.4 Dichtstoff aus Polysulfid oder Polyurethan oder Silikon
 - (1) ...nicht mit dem Rahmen verklebt

Maße in mm

Bauart Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30 nach DIN 4102-13


Anlage 27

Verbundglasscheibe "HERO-FIRE 30"

Isolierglasscheibe "ARNOLD-FIRE 30 ISO"

2-fach-ISO Scheibendicke ≧36 mm bis ≦60 mm wahlweise 3-fach-ISO Scheibendicke ≧40 mm bis ≦60 mm

- 9.1 bis 9.4 ≥ 22 mm und dickes "ARNOLD-FIRE 30" nach Anlage 26 ≤43 mm
 - dicke Scheibe wahlweise aus:

 Thermisch vorgespanntem Kalknatron-EinscheibensicherheitsGlas oder Floatglas oder Ornamentglas oder

 Verbund-Sicherheitsglas (VSG) mit PVB-Folie

Jeweils ungefärbt oder in der Masse eingefärbt; mit oder ohne Oberflächenveredelung, Schichten, Emaille- oder Lackauftrag, Siebdruck, aufgeklebte Sprossen⁽¹⁾; Folienbeklebung, Lasergravur

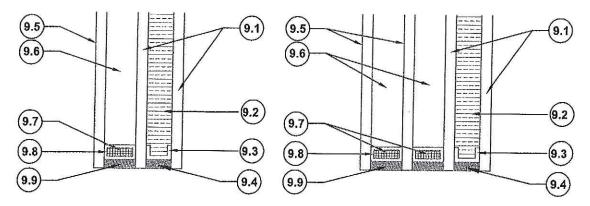
- 9.6 Scheibenzwischenraum mit Luft- oder Spezialgasfüllung, optional mit eingelegter Sprosse
- Abstandshalter aus Metall oder Kunststoff oder Verbundmaterialien mit Trockenmittel; ≧6,0 mm; ≦29 mm
- (9.8) Primärdichtung aus Polyisobutylen oder wasser- und gasdichten Polymeren
- (9.9) elastischer Dichtstoff auf Basis von Polysulfid oder Polyurethan oder Silikon
 - (1) ... nicht mit dem Rahmen verklebt

Maße in mm

Bauart Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30 nach DIN 4102-13

Anlage 28

Isolierglasscheibe "ARNOLD-FIRE 30 ISO"



Isolierglasscheibe "HERO-FIRE 30 ISO"

2-fach-ISO Scheibendicke ≧36 mm bis ≦60 mm wahlweise

3-fach-ISO

Scheibendicke ≥40 mm bis ≤60 mm

- (9.1) bis (9.4) ≥ 22 mm und dickes "HERO-FIRE 30" nach Anlage 27 ≤43 mm
 - 9.5

 ≥4,0 mm

 dicke Scheibe wahlweise aus:

 Thermisch vorgespanntem Kalknatron-EinscheibensicherheitsGlas oder Floatglas oder Ornamentglas oder

 Verbund-Sicherheitsglas (VSG) mit PVB-Folie

Jeweils ungefärbt oder in der Masse eingefärbt; mit oder ohne Oberflächenveredelung, Schichten, Emaille- oder Lackauftrag, Siebdruck, aufgeklebte Sprossen⁽¹⁾; Folienbeklebung, Lasergravur

- (9.6) Scheibenzwischenraum mit Luft- oder Spezialgasfüllung, optional mit eingelegter Sprosse
- 9.7) Abstandshalter aus Metall oder Kunststoff oder Verbundmaterialien mit Trockenmittel; ≧6,0 mm; ≦29 mm
- 9.8 Primärdichtung aus Polyisobutylen oder wasser- und gasdichten Polymeren
- (9.9) elastischer Dichtstoff auf Basis von Polysulfid oder Polyurethan oder Silikon
 - (1) ... nicht mit dem Rahmen verklebt

Maße in mm

Bauart Brandschutzverglasung "FIRE-HO" der Feuerwiderstandsklasse F 30 nach DIN 4102-13

Anlage 29

Isolierglasscheibe "HERO-FIRE 30 ISO"